Skip to main content

Towards an Integrated Protein-Protein Interaction Network

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3500))

Abstract

Protein-protein interactions play a major role in most cellular processes. Thus, the challenge of identifying the full repertoire of interacting proteins in the cell is of great importance, and has been addressed both experimentally and computationally. Today, large scale experimental studies of interacting proteins, while partial and noisy, allow us to characterize properties of interacting proteins and develop predictive algorithms. Most existing algorithms, however, ignore possible dependencies between interacting pairs, and predict them independently of one another. In this study, we present a computational approach that overcomes this drawback by predicting protein-protein interactions simultaneously. In addition, our approach allows us to integrate various protein attributes and explicitly account for uncertainty of assay measurements. Using the language of relational Markov Random Fields, we build a unified probabilistic model that includes all of these elements. We show how we can learn our model properties efficiently and then use it to predict all unobserved interactions simultaneously. Our results show that by modeling dependencies between interactions, as well as by taking into account protein attributes and measurement noise, we achieve a more accurate description of the protein interaction network. Furthermore, our approach allows us to gain new insights into the properties of interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock, J.R., Gough, D.A.: Predicting protein–protein interactions from primary structure. Bioinformatics 17(5), 455–460 (2001)

    Article  Google Scholar 

  2. Buntine, W.: Chain graphs for learning. In: Proc. Uncertainty in Art. Intel., pp. 46–54 (1995)

    Google Scholar 

  3. Costanzo, M.C., et al.: YPD, POMBEPD, and WORMPD: model organism volumes of the bioknowledge library, an integrated resource for protein information. Nuc. Acids Res. 29, 75–79 (2001)

    Article  Google Scholar 

  4. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields. IEEE Trans. on Pat. Anal. Mach. Intel. 19, 380–393 (1997)

    Article  Google Scholar 

  5. Deng, M., Chen, T., Sun, F.: An integrated probabilistic model for functional prediction of proteins. J. Comput. Bio. 11, 463–475 (2004)

    Google Scholar 

  6. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  7. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81 (1986)

    Google Scholar 

  8. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proc. Inte. Joint Conf. Art. Intel. (1999)

    Google Scholar 

  9. Gavin, A.C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  10. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of relational structure. In: Int. Conf. Mach. Learning (2001)

    Google Scholar 

  11. Huh, W., et al.: Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  Google Scholar 

  12. Iossifov, I., Krauthammer, M., Friedman, C., Hatzivassiloglou, V., Bader, J.S., White, K.P., Rzhetsky, A.: Probabilistic inference of molecular networks from noisy data sources. Bioinformatics 20, 1205–1213 (2004)

    Article  Google Scholar 

  13. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  14. Jansen, R., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003)

    Article  MathSciNet  Google Scholar 

  15. Jordan, M.I. (ed.): Learning in Graphical Models. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  16. Jordan, M.I., Ghahramani, Z., Jaakkola, T., Saul, L.K.: An introduction to variational approximations methods for graphical models. In: [15]

    Google Scholar 

  17. Kumar, A., et al.: Subcellular localization of the yeast proteome. Genes. Dev. 16, 707–719 (2002)

    Article  Google Scholar 

  18. Leone, M., Pagnani, A.: Predicting protein functions with message passing algorithms. Bioinformatics 21, 239–247 (2005)

    Article  Google Scholar 

  19. Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl. 1), i97–i204 (2003)

    Google Scholar 

  20. Mewes, H.W., Hani, J., Pfeiffer, F., Frishman, D.: MIPS: a database for genomes and protein sequences. Nuc. Acids Res. 26, 33–37 (1998)

    Article  Google Scholar 

  21. Murphy, K., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proc. Uncertainty in Art. Intel. (1999)

    Google Scholar 

  22. Neal, R.M., Hinton, G.E.: A new view of the EM algorithm that justifies incremental and other variants. In: [15]

    Google Scholar 

  23. Pellegrini, M., Marcotte, E.M., Yeates, T.O.: A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins 35, 440–446 (1999)

    Article  Google Scholar 

  24. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., Seraphin, B.: A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotech. 17, 1030–1032 (1999)

    Article  Google Scholar 

  25. Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(suppl. 1), i264–i271 (2003)

    Article  Google Scholar 

  26. Sprinzak, E., Margalit, H.: Correlated sequence-signatures as markers of protein-protein interaction. J. Mol. Biol. 311, 681–692 (2001)

    Article  Google Scholar 

  27. Sprinzak, E., Sattath, S., Margalit, H.: How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923 (2003)

    Article  Google Scholar 

  28. Taskar, B., Pieter Abbeel, A., Koller, D.: Discriminative probabilistic models for relational data. Proc. Uncertainty in Art. Intel., 485–492 (2002)

    Google Scholar 

  29. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. Adv. Neu. Inf.  Proc. Sys. (2003)

    Google Scholar 

  30. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. Adv. Neu. Inf.  Proc. Sys. (2003)

    Google Scholar 

  31. Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  32. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  33. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: A new class of upper bounds on the log partition function. In: Proc. Uncertainty in Art. Intel. (2002)

    Google Scholar 

  34. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. TR-2002-35, Mitsubishi Electric Research Labs (2002)

    Google Scholar 

  35. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. Adv. Neu. Inf.  Proc. Sys., 689–695 (2000)

    Google Scholar 

  36. Zhang, L.V., Wong, S.L., King, O.D., Roth, F.P.: Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5, 38 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaimovich, A., Elidan, G., Margalit, H., Friedman, N. (2005). Towards an Integrated Protein-Protein Interaction Network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_2

Download citation

  • DOI: https://doi.org/10.1007/11415770_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25866-7

  • Online ISBN: 978-3-540-31950-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics