Skip to main content

Optimization Tools for Radiation Treatment Planning in Matlab

  • Chapter
Operations Research and Health Care

Summary

This chapter describes a suite of optimization tools for radiation treatment planning within the Matlab programming environment. The data included with these tools was computed for real patient cases using a Monte Carlo dose engine. The formulation of a series of optimization models is described that utilizes this data within a modeling system. Furthermore, visualization techniques are provided that assist in validating the quality of each solution. The versatility and utility of the tools are shown using a sequence of optimization techniques designed to generate a practical solution. These tools and the associated data are available for download from www.cs.wisc.edu/~ferris/3dcrt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bortfeld, T. and W. Schlege (1993). Optimization of beam orientations in radiation-therapy-some theoretical considerations. Physics in Medicine and Biology, 38, 291–304.

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Bortfeld, T., J. Burkelbach, R. Boesecke, and W. Schlegel (1990). Methods of image reconstruction from projections applied to conformation radiotherapy. Physics in Medicine and Biology, 25, 1423–1434.

    Article  ADS  Google Scholar 

  3. Bortfeld, T., A.L. Boyer, W. Schlegel, D.L. Kahler, and T.J. Waldron (1994). Realization and verification of three-dimensional conformal radiotherapy with modulated fields. International Journal of Radiation Oncology: Biology, Physics, 30, 899–908.

    CAS  Google Scholar 

  4. Chen, Y., D. Michalski, C. Houser, and J. Galvin (2002). A deterministic iterative least-squares algorithm for beam weight optimization in conformal radiotherapy. Physics in Medicine and Biology, 47, 1647–1658.

    Article  ADS  PubMed  Google Scholar 

  5. Intensity Modulated Radiation Therapy Collaborative Working Group (2001). Intensity-modulated radiotherapy: Current status and issues of interest. International Journal of Radiation Oncology: Biology, Physics, 51, 880–914.

    Article  Google Scholar 

  6. Jordan, T.J. and P.C. Williams (1994). The design and performance characteristics of a multileaf collimator. Physics in Medicine and Biology, 39, 231–251.

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Tervo, T. and P. Kolmonen (2000). A model for the control of a multileaf collimator in radiation therapy treatment planning. Inverse Problems, 16, 1875–1895.

    Article  ADS  MathSciNet  Google Scholar 

  8. Webb, S. (1998). Configuration options for intensity-modulated radiation therapy using multiple static fields shaped by a multileaf collimator. Physics in Medicine and Biology, 43, 241–260.

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Wu, X. and Y. Zhu (2001). A global optimization method for three-dimensional conformal radiotherapy treatment planning. Physics in Medicine and Biology, 46, 109–119.

    ADS  MathSciNet  Google Scholar 

  10. van der Eijk, P. (2002). GDX facilities in GAMS. GAMS Contributed Software, http://www.gams.com/contrib/GDXUtils.pdf.

  11. Goitein, M., M. Abrams, S. Rowell, H. Pollari, and J. Wiles (1983). Multi-dimensional treatment planning: I. beam’s eye view, back projection, and projection through ct sections. International Journal of Radiation Oncology: Biology, Physics, 9, 789–797.

    Article  CAS  Google Scholar 

  12. Webb, S. (1997). The Physics of Conformal Radiotherapy. Bristol, UK: Institute of Physics Publishing.

    Google Scholar 

  13. Brewster, L., G.S. Mageras, and R. Mohan (1993). Automatic-generation of beam apertures. Medical Physics, 20, 1337–1342.

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Chen, G.T.Y., D.R. Spelbring, C.A. Pelizzari, J.M. Balter, L.C. Myrianthopoulous, S. Vijayakumar, and H. Halpern (1992). The use of beam eye view volumetrics in the selection of noncoplanar radiation portals. International Journal of Radiation Oncology: Biology, Physics, 23, 153–163.

    Article  CAS  Google Scholar 

  15. Cho, B.C.J., W.H. Roa, D. Robinson, and B. Murray (1999). The development of target-eye-view maps for selection of coplanar or non-23 coplanar beams in conformal radiotherapy treatment planning. Medical Physics, 26, 2367–2372.

    Article  ADS  PubMed  CAS  Google Scholar 

  16. McShan, D.L. B.A. Fraass, and A.S. Lichter (1989). Full integration of the beam’s eye view concept into computerized treatment planning. International Journal of Radiation Oncology: Biology, Physics, 18, 1485–1494.

    Google Scholar 

  17. Myrianthopoulos, L.C., G.T.Y. Chen, S. Vijayakumar, H. Halpern, D. R. Spelbring, and C.A. Pelizzari (1992). Beams eye view volumetrics-an aid in rapid treatment plan development and evaluation. International Journal of Radiation Oncology: Biology, Physics, 23, 67–375.

    Google Scholar 

  18. Lim, J., M.C. Ferris, S.J. Wright, D.M. Shepard, and M.A. Earl (2002). An optimization framework for conformation radiation treatment planning. Optimization Technical Report 02-08, Computer Sciences Department, University of Wisconsin, Madison, WI.

    Google Scholar 

  19. Redpath, A.T., B.L. Vickery, and D.H. Wright (1976). A new technique for radiotherapy planning using quadratic programming. Physics in Medicine and Biology, 21, 781–791.

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Shepard, D.M., M.C. Ferris, G. Olivera, and T.R. Mackie (1999). Optimizing the delivery of radiation to cancer patients. SIAM Review, 41, 721–744.

    Article  Google Scholar 

  21. Starkschall, G. (1984). A constrained least-squares optimization method for external beam radiation therapy treatment planning. Medical Physics, 11, 659–665.

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Bahr, G.K., J.G. Kereiakes, H. Horwitz, R. Finney, J. Galvin, and K. Goode (1968). The method of linear programming applied to radiation treatment planning. Radiology, 91, 686–693.

    PubMed  CAS  Google Scholar 

  23. Langer, M. and J. Leong (1987). Optimization of beam weights under dose volume restriction. International Journal of Radiation Oncology: Biology, Physics, 13, 1255–1260.

    Article  CAS  Google Scholar 

  24. Morrill, S., R. Lane, J. Wong, and I.I. Rosen (1991). Dose-volume considerations with linear programming. Medical Physics, 6, 1201–1210.

    Article  ADS  Google Scholar 

  25. Rosen, I.I., R. Lane, S. Morrill, and J. Belli (1990). Treatment plan optimization using linear programming. Medical Physics, 18, 141–152.

    Article  ADS  Google Scholar 

  26. Romeijn, H.E., R.K. Ahuja, and J.F. Dempsey (2003). A new linear programming approach to radiation therapy treatment planning problems. Technical Report, University of Florida, Gainesville, FL.

    Google Scholar 

  27. Kontogiorgis, S. (2000). Practical piecewise-linear approximation for monotropic optimization. INFORMS Journal on Computing, 12, 324–340.

    Article  MathSciNet  Google Scholar 

  28. Ho, J.K. (1985). Relationships among linear formulations of separable convex piecewise linear programs. Mathematical Programming Study, 24, 126–140.

    MATH  Google Scholar 

  29. Choi, B. and J. O’Deasy (2002). The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Physics in Medicine and Biology, 47, 3579–3589.

    Article  ADS  PubMed  Google Scholar 

  30. Ferris, M.C. (1998). MATLAB and GAMS interfacing optimization and visualization soft ware. Mathematical Programming Technical Report 98-19, Computer Sciences Department, University of Wisconsin, Madison, WI.

    Google Scholar 

  31. Rowbottom, C.G., V.S. Khoo, and S. Webb (2001). Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy. Medical Physics, 28, 1696–1702.

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Langer, M., R. Brown, M. Urie, J. Leong, M. Stracher, and J. Shapiro (1990). Large-scale optimization of beam-weights under dose volume restrictions. International Journal of Radiation Oncology: Biology, Physics, 18, 887–893.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Ferris, M.C., Lim, J., Shepard, D.M. (2005). Optimization Tools for Radiation Treatment Planning in Matlab. In: Brandeau, M.L., Sainfort, F., Pierskalla, W.P. (eds) Operations Research and Health Care. International Series in Operations Research & Management Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8066-2_30

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8066-2_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7629-9

  • Online ISBN: 978-1-4020-8066-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics