Skip to main content

km23: A Novel TGFβ Signaling Target Altered in Ovarian Cancer

  • Chapter
Molecular Targeting and Signal Transduction

Part of the book series: Cancer Treatment and Research ((CTAR,volume 119))

Conclusions

km23 is a novel motor receptor found to be linked to a TGFβ signaling pathway. Based upon our observations, we have constructed the following model (Fig. 3). Upon phosphorylation of km23 by TβRs, DIC is recruited to form a motor complex. This complex transports membrane vesicles containing TGFβ signaling components such as Smad2 along the microtubules to a new vesicular compartment. After reaching the new compartment, the Smad complex may be translocated to the nucleus for transcriptional regulation of target genes. At this time point, km23 is no longer co-localized with Smad2. Future studies are still required to answer several questions about this novel TGFβ signaling intermediate. For example, we would like to identify other cargoes that km23 carries along the MTs. In addition, it would be of interest to know precisely which serine residues are phosphorylated by TGFβ, as well as what the consequences of dephosphorylation of these sites may be. Overall, we would like to develop km23-based cancer diagnostics and therapeutics, since km23 is altered at such a high rate in ovarian cancer. km23 most likely plays an important role in tumorgenesis or tumor progression in at least this type of cancer. Future studies will reveal whether this is the case for other tumor types as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Massague J., Blain S.W., and Lo R.S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 2000; 103: 295–309.

    Article  CAS  PubMed  Google Scholar 

  2. Yue J. and Mulder K.M. Transforming growth factor-β signaling transduction in epithelial cells. Pharmacol Ther 2001; 91: 1–34

    Article  CAS  PubMed  Google Scholar 

  3. Heldin C.H., Miyazono K., and ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.

    Article  CAS  PubMed  Google Scholar 

  4. Massague J. TGF-β signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    Article  CAS  PubMed  Google Scholar 

  5. Abdollah S., Macias-Silva M., Tsukazaki T., Hayashi H., Attisano L., and Wrana J.L. TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 1997; 272: 27678–27685.

    Article  CAS  PubMed  Google Scholar 

  6. Mulder K.M. and Morris S.L. Activation of p21ras by transforming growth factor β in epithelial cells. J Biol Chem 1992; 267: 5029–5031.

    CAS  PubMed  Google Scholar 

  7. Hartsough M.T. and Mulder K.M. Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 1995; 270: 7117–7124.

    CAS  PubMed  Google Scholar 

  8. Hartsough M.T., Frey R.S., Zipfel P.A., Buard A., Cook S.J., McCormick F., and Mulder K.M. Altered transforming growth factor signaling in epithelial cells when ras activation is blocked. J Biol Chem 1996; 271: 22368–22375.

    CAS  PubMed  Google Scholar 

  9. Frey R.S. and Mulder K.M. Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res 1997; 57: 628–633.

    CAS  PubMed  Google Scholar 

  10. Hocevar B.A., Brown T.L., and Howe P.H. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999; 18: 1345–1356.

    Article  CAS  PubMed  Google Scholar 

  11. Tsukazaki T., Chiang T.A., Davison A.F., Attisano L., and Wrana J.L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 1998; 95: 779–791.

    Article  CAS  PubMed  Google Scholar 

  12. Miura S., Takeshita T., Asao H., Kimura Y., Murata K., Sasaki Y., Hanai J.I., Beppu H., Tsukazaki T., Wrana J.L., Miyazono K., and Sugamura K. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 2000; 20: 9346–9355.

    Article  CAS  PubMed  Google Scholar 

  13. Hocevar B. A., Smine A., Xu X.X., and Howe P.H. The adaptor molecule disabled-2 links the transforming growth factor β receptors to the Smad pathway. EMBO J 2001; 20: 2789–2801.

    Article  CAS  PubMed  Google Scholar 

  14. Datta P.K. and Moses H.L. STRAP and Smad7 synergize in the inhibition of transforming growth factor β signaling. Mol Cell Biol 2000; 20: 3157–3167.

    Article  CAS  PubMed  Google Scholar 

  15. Wang T., Li B.Y., Danielson P.D., Shah P.C., Rockwell S., Lechleider R.J., Martin J., Manganaro T., and Donahoe P.K. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 1996; 86: 435–444.

    Article  CAS  PubMed  Google Scholar 

  16. Chen R.H., Miettinen P.J., Maruoka E.M., Choy L., and Derynck R. A WD-domain protein that is associated with and phosphorylated by the type II TGF-β receptor. Nature 1995; 377: 548–552.

    CAS  PubMed  Google Scholar 

  17. Perlman R., Schiemann W.P., Brooks M.W., Lodish H.F., and Weinberg R.A. TGFβ-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001; 3: 708–714.

    Article  CAS  PubMed  Google Scholar 

  18. Charng M.J., Zhang D., Kinnunen P., and Schneider M.D. A novel protein distinguishes between quiescent and activated forms of the type I transforming growth factor β receptor. J Biol Chem 1998; 273: 9365–9368.

    Article  CAS  PubMed  Google Scholar 

  19. Felici A., Wurthner J.U., Parks W.T., Giam L.R., Reiss M., Karpova T.S., McNally J.G., and Roberts A.B. TLP, a novel modulator of TGF-β signaling, has opposite effects on Smad2-and Smad3-dependent signaling. EMBO J 2003; 22: 4465–4477.

    Article  CAS  PubMed  Google Scholar 

  20. Tang Q., Staub C.M., Gao G., Jin Q., Wang Z., Ding W., Aurigemma R.E., and Mulder K.M. A novel TGFβ receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13: 4484–4496.

    Article  CAS  PubMed  Google Scholar 

  21. Mulder K.M., Segarini P.R., Morris S.L., Ziman J.M., and Choi H.G. Role of receptor complexes in resistance or sensitivity to growth inhibition by TGFβ in intestinal epithelial cell clones. J Cell Physiol 1993; 54: 162–174.

    Google Scholar 

  22. Shi Y. and Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  23. Jorissen R.N., Walker F., Pouliot N., Garrett T.P., Ward C.W., and Burgess A.W. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31–53.

    Article  CAS  PubMed  Google Scholar 

  24. Kreegipuu A., Blom N., and Brunak S. PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 1999; 27: 237–239.

    Article  CAS  PubMed  Google Scholar 

  25. Derynck R., Akhurst R.J., and Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  CAS  PubMed  Google Scholar 

  26. Susalka S.J., Nikulina K., Salata M.W., Vaughan P.S., King S.M., Vaughan K.T., and Pfister K.K. The roadblock light chain binds a novel region of the cytoplasmic dynein intermediate chain. J Biol Chem 2002; 277: 32939–32946.

    Article  CAS  PubMed  Google Scholar 

  27. Nagano F., Orita S., Sasaki T., Naito A., Sakaguchi G., Maeda M., Watanabe T., Kominami E., Uchiyama Y., and Takai Y. Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. J Biol Chem 1998; 273: 30065–30068.

    CAS  PubMed  Google Scholar 

  28. Campbell K.S., Cooper S., Dessing M., Yates S., and Buder A. Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J Immunol 1998; 161: 1728–1737.

    CAS  PubMed  Google Scholar 

  29. Tai A.W., Chuang J.Z., Bode C., Wolfrum U., and Sung C.H. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 1999; 97: 877–887.

    Article  CAS  PubMed  Google Scholar 

  30. Jaffrey S.R. and Snyder S.H. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996; 274: 774–777.

    Article  CAS  PubMed  Google Scholar 

  31. Fan J.S., Zhang Q., Li M., Tochio H., Yamazaki T., Shimizu M., and Zhang M. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem 1998; 273: 33472–33481.

    CAS  PubMed  Google Scholar 

  32. Puthalakath H., Huang D.C., O’Reilly L.A., King S.M., and Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999; 3: 287–296.

    Article  CAS  PubMed  Google Scholar 

  33. Schnorrer F., Bohmann K., and Nusslein-Volhard C. The molecular motordynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat Cell Biol 2000; 2: 185–190.

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Crespo I., Yelamos B., Roncal F., Albar J.P., Ortiz de Montellano P.R., and Gavilanes F. Identification of novel cellular proteins that bind to the LC8 dynein light chain using a pepscan technique. FEBS Lett 2001; 503: 135–141.

    CAS  PubMed  Google Scholar 

  35. Lo K.W., Naisbitt S., Fan J.S., Sheng M., and Zhang M. The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 2001; 276: 14059–14066.

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Moreno M., Navarro-Lerida I., Roncal F., Albar J.P., Alonso C., Gavilanes F., and Rodriguez-Crespo I. Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 2003; 544: 262–267.

    CAS  PubMed  Google Scholar 

  37. Massague J. and Wotton D. Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000; 19: 1745–1754.

    Article  CAS  PubMed  Google Scholar 

  38. Landis S.H., Murray T., Bolden S., and Wingo P. A. Cancer statistics, 2001. CA Cancer J Clin 2001; 51: 15–36.

    Google Scholar 

  39. Yamada S.D., Baldwin R.L., and Karlan B.Y. Ovarian carcinoma cell cultures are resistant to TGF-β1-mediated growth inhibition despite expression of functional receptors. Gynecol Oncol 1999; 75: 72–77.

    Article  CAS  PubMed  Google Scholar 

  40. Hu W., Wu W., Nash M.A., Freedman R.S., Kavanagh J.J., and Verschraegen C.F. Anomalies of the TGF-β postreceptor signaling pathway in ovarian cancer cell lines. Anticancer Res 2000; 20: 729–733.

    CAS  PubMed  Google Scholar 

  41. Lync M.A., Nakashima R., Song H.J., Degroff V.L., Wang D., Enomoto T., and Weghorst C.M. Mutational analysis of the transforming growth factor β receptor type II gene in human ovarian carcinoma. Cancer Res 1998; 58: 4227–4232.

    Google Scholar 

  42. Chen T., Triplett J., Dehner B., Hurst B., Colligan B., Pemberton J., Graff J.R., and Carter J.H. Transforming growth factor-β receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res 2001; 61: 4679–4682.

    CAS  PubMed  Google Scholar 

  43. Cadillo M.R., Yap E., and Castagna G. Molecular genetic analysis of TGF-β1 in ovarian neoplasia. J Exp Clin Cancer Res 1997; 16: 49–56.

    Google Scholar 

  44. Wang D., Kanuma T., Muzunuma H., Takama F., Ibuki Y., Wake N., Mogi A., Shitara Y., and Takenoshita S. Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res 2000; 60: 4507–4512.

    CAS  PubMed  Google Scholar 

  45. Zeinoun Z., Teugels E., De Bleser P.J., Neyns B., Geerts A., and De Greve J. Insufficient TGF-β1 production inactivates the autocrine growth suppressive circuit in human ovarian cancer cell lines. Anticancer Res 1999; 19: 413–420.

    CAS  PubMed  Google Scholar 

  46. Jozan S., Guerrin M., Mazars P., Dutaur M., Monsarrat B., Cheutin F., Bugat R., Martel P., and Valette A. Transforming growth factor β1 TGF-β1) inhibits growth of a human ovarian carcinoma cell line (OVCCR1) and is expressed in human ovarian tumors. Int J Cancer 1992; 52: 766–770.

    CAS  PubMed  Google Scholar 

  47. Bowman A.B., Patel-King R.S., Benashski S.E., McCaffery J.M., Goldstein L.S., and King S.M. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 1999; 146: 165–180.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ding, W., Mulder, K.M. (2004). km23: A Novel TGFβ Signaling Target Altered in Ovarian Cancer. In: Kumar, R. (eds) Molecular Targeting and Signal Transduction. Cancer Treatment and Research, vol 119. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7847-1_15

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7847-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7822-4

  • Online ISBN: 978-1-4020-7847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics