Skip to main content

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

The objective of this chapter is to summarize our current understanding of the role of growth factor autocrine signaling in cell motility. The Epidermal Growth Factor Receptor (EGFR) was chosen as a central example system for motivating autocrine operation as important in both normal physiological processes as well as pathological conditions such as cancer. We provide specific evidence from research literature for autocrine stimulation of cell motility measured in vitro, from several cell lines, and in vivo from mouse models. Relevant growth factors include the EGFR ligands TGF-alpha, HB-EGF, and Amphiregulin, as well as members of other growth factor families including FGF, G-CSF, GM-CSF, HGF and VEGF. Results from autocrine systems that involve EGFR crosstalk are also discussed, including GPCR and IL-6 mediated activation. We outline the cellular parameters, determined by experimental and computational work, that govern autocrine operation and the spatial range of autocrine ligands. We also present intercellular signaling pathways relevant to cell motility that may be involved in propagating localized signals from the cell surface. Finally, we review experimental findings that demonstrate how the mode of growth factor presentation can affect cell migration behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 1980, 303: 878–80.

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57–70.

    PubMed  CAS  Google Scholar 

  3. Sporn MB, Roberts AB. Autocrine growth factors and cancer. Nature 1985, 313: 745–7.

    PubMed  CAS  Google Scholar 

  4. Sporn MB, Roberts AB. Autocrine secretion-10 years later. Ann. Intern. Med. 1992, 117: 408–14.

    PubMed  CAS  Google Scholar 

  5. Tokumaru S, et al. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing. J. Cell Biol. 2000, 151: 209–20.

    PubMed  CAS  Google Scholar 

  6. Seghezzi G, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 1998, 141: 1659–73.

    PubMed  CAS  Google Scholar 

  7. Wasserman JD, Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 1998, 95: 355–64.

    PubMed  CAS  Google Scholar 

  8. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2: 127–37.

    PubMed  CAS  Google Scholar 

  9. Caric D, et al. EGFRs mediate chemotactic migration in the developing telencephalon. Development 2001, 128: 4203–16.

    PubMed  CAS  Google Scholar 

  10. Kumar R, Wang RA. Protein kinases in mammary gland development and cancer. Microsc. Res. Tech. 2002, 59: 49–57.

    PubMed  CAS  Google Scholar 

  11. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp. Cell Res. 2003, 284: 99–110.

    PubMed  CAS  Google Scholar 

  12. Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7 Suppl. 2002, 4: 31–9.

    Google Scholar 

  13. Hsieh ET, Shepherd FA, Tsao MS. Co-expression of epidermal growth factor receptor and transforming growth factor-alpha is independent of ras mutations in lung adenocarcinoma. Lung Cancer 2000, 29: 151–7.

    PubMed  CAS  Google Scholar 

  14. Suo Z, et al. The expression of EGFR family ligands in breast carcinomas. Int. J. Surg. Pathol. 2002, 10: 91–9.

    PubMed  CAS  Google Scholar 

  15. Cai YC, et al. Expression of transforming growth factor-alpha and epidermal growth factor receptor in gastrointestinal stromal tumours. Virchows Arch. 1999, 435: 112–5.

    PubMed  CAS  Google Scholar 

  16. Kopp R, et al. Clinical implications of the EGF receptor/ligand system for tumor progression and survival in gastrointestinal carcinomas: evidence for new therapeutic options. Recent Results Cancer Res. 2003, 162: 115–32.

    PubMed  CAS  Google Scholar 

  17. Yamanaka Y, et al. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 1993, 13: 565–9.

    PubMed  CAS  Google Scholar 

  18. Zhu Z, et al. Epiregulin is Up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem. Biophys. Res. Commun. 2000, 273: 1019–24.

    PubMed  CAS  Google Scholar 

  19. Damstrup L, et al. Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. Br. J. Cancer 1999, 80: 1012–9.

    PubMed  CAS  Google Scholar 

  20. Rubin Grandis J, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J. Natl. Cancer Inst. 1998, 90: 824–32.

    PubMed  CAS  Google Scholar 

  21. Salomon DS, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 1995, 19: 183–232.

    PubMed  CAS  Google Scholar 

  22. Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp. Cell Res. 2003, 284: 2–13.

    PubMed  CAS  Google Scholar 

  23. Arribas J, Lopez-Casillas F, Massague J. Role of the juxtamembrane domains of the transforming growth factor-alpha precursor and the beta-amyloid precursor protein in regulated ectodomain shedding. J. Biol. Chem. 1997, 272: 17160–5.

    PubMed  CAS  Google Scholar 

  24. Merlos-Suarez A, et al. Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme. J. Biol. Chem. 2001, 276: 48510–7.

    PubMed  CAS  Google Scholar 

  25. Borrell-Pages M, et al. TACE is required for the activation of the EGFR by TGF-alpha in tumors. Embo. J. 2003, 22: 1114–24.

    PubMed  CAS  Google Scholar 

  26. Hinkle CL, et al. Multiple metalloproteinases process protransforming growth factoralpha (proTGF-alpha). Biochemistry 2003, 42: 2127–36.

    PubMed  CAS  Google Scholar 

  27. Baselga J, et al. Autocrine regulation of membrane transforming growth factor-alpha cleavage. J. Biol. Chem. 1996, 271: 3279–84.

    PubMed  CAS  Google Scholar 

  28. Fan H, Derynck R. Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. Embo. J. 1999, 18: 6962–72.

    PubMed  CAS  Google Scholar 

  29. Gechtman Z, et al. The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol. Chem. 1999, 274: 28828–35.

    PubMed  CAS  Google Scholar 

  30. Fan H, Turck CW, Derynck R. Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J. Biol. Chem. 2003, 278: 18617–27.

    PubMed  CAS  Google Scholar 

  31. Schulze A, et al. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes. Dev. 2001, 15: 981–94.

    PubMed  CAS  Google Scholar 

  32. Wiley HS, Shvartsman SY, Lauffenburger DA. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 2003, 13: 43–50.

    PubMed  CAS  Google Scholar 

  33. Gavrilovic J, et al. Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul. 1990, 1: 1003–14.

    PubMed  CAS  Google Scholar 

  34. Kim HG, et al. EGF receptor signaling in prostate morphogenesis and tumorigenesis. Histol. Histopathol. 1999, 14: 1175–82.

    PubMed  CAS  Google Scholar 

  35. Tillotson JK, Rose DP. Endogenous secretion of epidermal growth factor peptides stimulates growth of DU145 prostate cancer cells. Cancer Lett. 1991, 60: 109–12.

    PubMed  CAS  Google Scholar 

  36. Xie H, et al. In vitro invasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clin. Exp. Metastasis 1995, 13: 407–19.

    PubMed  CAS  Google Scholar 

  37. Ekstrand AJ, et al. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991, 51: 2164–72.

    PubMed  CAS  Google Scholar 

  38. Schlegel U, et al. Expression of transforming growth factor alpha in human gliomas. Oncogene 1990, 5: 1839–42.

    PubMed  CAS  Google Scholar 

  39. El-Obeid A, et al. Cell scattering and migration induced by autocrine transforming growth factor alpha in human glioma cells in vitro. Cancer Res. 1997, 57: 5598–604.

    PubMed  CAS  Google Scholar 

  40. Dong J, et al. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc. Natl. Acad. Sci. U S A 1999, 96: 6235–40.

    PubMed  CAS  Google Scholar 

  41. Block ER, et al. Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints: role of heparin-binding epidermal growth factor-like growth factor signaling. J. Biol. Chem. 2004, 279: 24307–12.

    PubMed  CAS  Google Scholar 

  42. Hirano T. Interleukin 6 and its receptor: ten years later. Int. Rev. Immunol. 1998, 16: 249–84.

    PubMed  CAS  Google Scholar 

  43. Badache A, Hynes NE. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res. 2001, 61: 383–91.

    PubMed  CAS  Google Scholar 

  44. Gschwind A, et al. Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 2001, 20: 1594–600.

    PubMed  CAS  Google Scholar 

  45. Gschwind A, et al. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. Embo. J. 2003, 22: 2411–21.

    PubMed  CAS  Google Scholar 

  46. Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971, 27: 166–7.

    PubMed  CAS  Google Scholar 

  47. Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res. 1999, 59: 1152–9.

    PubMed  CAS  Google Scholar 

  48. Aprikian AG, et al. Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int. J. Cancer. 1997, 72: 498–504.

    PubMed  CAS  Google Scholar 

  49. Madarame J, et al. Transactivation of epidermal growth factor receptor after heparinbinding epidermal growth factor-like growth factor shedding in the migration of prostate cancer cells promoted by bombesin. Prostate 2003, 57: 187–95.

    PubMed  CAS  Google Scholar 

  50. Chen WN, et al. Induced autocrine signaling through the epidermal growth factor receptor contributes to the response of mammary epithelial cells to tumor necrosis factor alpha. J. Biol. Chem. 2004, 279: 18488–96.

    PubMed  CAS  Google Scholar 

  51. Carswell EA, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. U S A 1975, 72: 3666–70.

    PubMed  CAS  Google Scholar 

  52. Natoli G, et al. Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochem. Pharmacol. 1998, 56: 915–20.

    PubMed  CAS  Google Scholar 

  53. Turner T, et al. EGF receptor signaling enhances in vivo invasiveness of DU-145 human prostate carcinoma cells. Clin. Exp. Metastasis. 1996, 14: 409–18.

    PubMed  CAS  Google Scholar 

  54. Pilcher BK, et al. Keratinocyte collagenase-1 expression requires an epidermal growth factor receptor autocrine mechanism. J. Biol. Chem. 1999, 274: 10372–81.

    PubMed  CAS  Google Scholar 

  55. Angel P, Szabowski A. Function of AP-1 target genes in mesenchymal-epithelial crosstalk in skin. Biochem. Pharmacol. 2002, 64: 949–56.

    PubMed  CAS  Google Scholar 

  56. Yates S, Rayner TE, Transcription factor activation in response to cutaneous injury: role of AP-1 in reepithelialization. Wound Repair Regen. 2002, 10: 5–15.

    PubMed  Google Scholar 

  57. Fu S, et al. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation. Proc. Natl. Acad. Sci. U S A 1999, 96: 5716–21.

    PubMed  CAS  Google Scholar 

  58. Johnson AC, et al. Activator protein-1 mediates induced but not basal epidermal growth factor receptor gene expression. Mol. Med. 2000, 6: 17–27.

    PubMed  CAS  Google Scholar 

  59. Li G, et al. c-Jun is essential for organization of the epidermal leading edge. Dev. Cell 2003, 4: 865–77.

    PubMed  CAS  Google Scholar 

  60. Miettinen PJ, et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 1995, 376: 337–41.

    PubMed  CAS  Google Scholar 

  61. Luetteke NC, et al. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 1993, 73: 263–78.

    PubMed  CAS  Google Scholar 

  62. Grose R. Epithelial migration: open your eyes to c-Jun. Curr. Biol. 2003, 13: R678–80.

    PubMed  CAS  Google Scholar 

  63. Ornitz DM, Itoh N. Fibroblast growth factors. Genome. Biol. 2001, 2: REVIEWS3005.

    Google Scholar 

  64. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001, 22: 201–7.

    PubMed  CAS  Google Scholar 

  65. Sato Y, and Rifkin DB. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J. Cell Biol. 1988, 107: 1199–205.

    PubMed  CAS  Google Scholar 

  66. Mignatti P, Morimoto T, Rifkin DB. Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proc. Natl. Acad. Sci. U S A 1991, 88: 11007–11.

    PubMed  CAS  Google Scholar 

  67. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science 1985, 229: 16–22.

    PubMed  CAS  Google Scholar 

  68. Tachibana M, et al. Autocrine growth of transitional cell carcinoma of the bladder induced by granulocyte-colony stimulating factor. Cancer Res. 1995, 55: 3438–43.

    PubMed  CAS  Google Scholar 

  69. Mueller MM, et al. Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colonystimulating factor and granulocyte-macrophage colony-stimulating factor. Am. J. Pathol. 2001, 159: 1567–79.

    PubMed  CAS  Google Scholar 

  70. Uemura Y, et al. Effect of serum deprivation on constitutive production of granulocytecolony stimulating factor and granulocyte macrophage-colony stimulating factor in lung cancer cells. Int. J. Cancer 2004, 109: 826–32.

    PubMed  CAS  Google Scholar 

  71. Mueller MM, et al. Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am. J. Pathol. 1999, 155: 1557–67.

    PubMed  CAS  Google Scholar 

  72. Uehara Y, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995, 373: 702–5.

    PubMed  CAS  Google Scholar 

  73. Borowiak M, et al. Met provides essential signals for liver regeneration. Proc. Natl. Acad. Sci. U S A 2004, 101: 10608–13.

    PubMed  CAS  Google Scholar 

  74. Takayama H, et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. U S A 1997, 94: 701–6.

    PubMed  CAS  Google Scholar 

  75. Tuck AB, et al. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am. J. Pathol. 1996, 148: 225–32.

    PubMed  CAS  Google Scholar 

  76. Humphrey PA, et al. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 1995, 147: 386–96.

    PubMed  CAS  Google Scholar 

  77. Vadnais J, et al. Autocrine activation of the hepatocyte growth factor receptor/met tyrosine kinase induces tumor cell motility by regulating pseudopodial protrusion. J. Biol. Chem. 2002, 277: 48342–50.

    PubMed  CAS  Google Scholar 

  78. Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359: 843–5.

    PubMed  CAS  Google Scholar 

  79. Brown LF, et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin. Cancer Res. 1999, 5: 1041–56.

    PubMed  CAS  Google Scholar 

  80. Salven P, et al. Serum VEGF levels in women with a benign breast tumor or breast cancer. Breast Cancer Res. Treat. 1999, 53: 161–6.

    PubMed  CAS  Google Scholar 

  81. Mercurio AM, et al. Autocrine signaling in carcinoma: VEGF and the alpha6beta4 integrin. Semin. Cancer Biol. 2004, 14: 115–22.

    PubMed  CAS  Google Scholar 

  82. Bachelder RE, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res. 2003, 63: 5230–3.

    PubMed  CAS  Google Scholar 

  83. Forsten KE, Lauffenburger DA. Autocrine ligand binding to cell receptors. Mathematical analysis of competition by solution “decoys”. Biophys. J. 1992, 61: 518–29.

    PubMed  CAS  Google Scholar 

  84. Shvartsman SY, et al. Spatial range of autocrine signaling: modeling and computational analysis. Biophys. J. 2001, 81: 1854–67.

    PubMed  CAS  Google Scholar 

  85. Lauffenburger DA, et al. Real-time quantitative measurement of autocrine ligand binding indicates that autocrine loops are spatially localized. Proc. Natl. Acad. Sci. U S A 1998, 95: 15368–73.

    PubMed  CAS  Google Scholar 

  86. Oehrtman GT, Wiley HS, Lauffenburger DA. Escape of autocrine ligands into extracellular medium: experimental test of theoretical model predictions. Biotechnol. Bioeng. 1998, 57: 571–82.

    PubMed  CAS  Google Scholar 

  87. DeWitt AE, et al. Quantitative analysis of the EGF receptor autocrine system reveals cryptic regulation of cell response by ligand capture. J. Cell Sci. 2001, 114: 2301–13.

    PubMed  CAS  Google Scholar 

  88. DeWitt A, et al. Affinity regulates spatial range of EGF receptor autocrine ligand binding. Dev. Biol. 250: 305–16.

    Google Scholar 

  89. Maly IV, Wiley HS, Lauffenburger DA. Self-organization of polarized cell signaling via autocrine circuits: computational model analysis. Biophys. J. 2004, 86: 10–22.

    PubMed  CAS  Google Scholar 

  90. Shvartsman SY, Muratov CB, and Lauffenburger DA. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 2002, 129: 2577–89.

    PubMed  CAS  Google Scholar 

  91. Glading A, et al. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J. Biol. Chem. 2000, 275: 2390–8.

    PubMed  CAS  Google Scholar 

  92. Glading A, et al. Membrane proximal ERK signaling is required for M-calpain activation downstream of epidermal growth factor receptor signaling. J. Biol. Chem. 2001, 276: 23341–8.

    PubMed  CAS  Google Scholar 

  93. Kempiak SJ, et al. Local signaling by the EGF receptor. J. Cell Biol. 2003, 162: 781–7.

    PubMed  CAS  Google Scholar 

  94. Haugh JM, et al. Effect of epidermal growth factor receptor internalization on regulation of the phospholipase C-gamma1 signaling pathway. J. Biol. Chem. 1999, 274: 8958–65.

    PubMed  CAS  Google Scholar 

  95. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. 2002, 12: 46–54.

    PubMed  CAS  Google Scholar 

  96. Wells A, Grandis JR. Phospholipase C-gamma1 in tumor progression. Clin. Exp. Metastasis. 2003, 20: 285–90.

    PubMed  CAS  Google Scholar 

  97. Meinhardt H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 1999, 112: 2867–74.

    PubMed  CAS  Google Scholar 

  98. Iijima M, Huang YE, Devreotes P. Temporal and spatial regulation of chemotaxis. Dev. Cell 2002, 3: 469–78.

    PubMed  CAS  Google Scholar 

  99. Condeelis JS, et al. Lamellipodia in invasion. Semin. Cancer Biol. 2001, 11: 119–28.

    PubMed  CAS  Google Scholar 

  100. Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol. 2003, 13: 478–83.

    PubMed  CAS  Google Scholar 

  101. Wang F, et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 2002, 4: 513–8.

    PubMed  CAS  Google Scholar 

  102. Sawyer C, et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res. 2003, 63: 1667–75.

    PubMed  CAS  Google Scholar 

  103. Verveer PJ, et al. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 2000, 290: 1567–70.

    PubMed  CAS  Google Scholar 

  104. Sawano A, et al. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 2002, 3: 245–57.

    PubMed  CAS  Google Scholar 

  105. Segall JE, et al. EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clin. Exp. Metastasis. 1996, 14: 61–72.

    PubMed  CAS  Google Scholar 

  106. Schlessinger J. All signaling is local? Mol. Cell 2002, 10: 218–9.

    PubMed  CAS  Google Scholar 

  107. Reynolds AR, et al. EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat. Cell Biol. 2003, 5: 447–53.

    PubMed  CAS  Google Scholar 

  108. Maheshwari G, Wiley HS, and Lauffenburger DA. Autocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration. J. Cell Biol. 2001, 155: 1123–8.

    PubMed  CAS  Google Scholar 

  109. Wiley HS, et al. Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. J. Cell Biol. 1998, 143: 1317–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Joslin, E.J., Lauffenburger, D.A. (2006). Autocrine Growth Factor Signaling in Motility. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_5

Download citation

Publish with us

Policies and ethics