Skip to main content

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 8))

Abstract

Head and neck squamous cell carcinoma (HNSCC) arise in areas where locoregional spread of tumors interferes with functions vital for survival. These tumors are highly aggressive with poor five-year survival rates. Understanding the mechanisms whereby HSNCC invade into the surrounding tissues may help identify novel therapeutic targets for management and prevention of tumor dissemination. Several molecules including growth factor receptors, cytokines and matrix degrading enzymes have been examined for their role in HNSCC cell invasion. In vivo animal models are being developed to test novel therapeutic strategies and investigate the mechanisms of HNSCC invasion. In this chapter an overview of the pathways implicated in HNSCC invasion, the animal models commonly used and some of the preclinical therapeutic approaches targeting HNSCC invasion are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ziober BL, Silverman SS, Jr., Kramer RH. Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit. Rev. Oral. Biol. Med. 2001, 12: 499–510.

    Article  PubMed  CAS  Google Scholar 

  2. Friedl P, Borgmann S, Brocker EB. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J. Leukoc. Biol. 2001, 70: 491–509.

    PubMed  CAS  Google Scholar 

  3. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53: 3579–84.

    PubMed  CAS  Google Scholar 

  4. Ohshima M, et al. Physiologic levels of epidermal growth factor in saliva stimulate cell migration of an oral epithelial cell line, HO-1-N-1. Eur. J. Oral Sci. 2002, 110: 130–6.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas SM, et al. Epidermal growth factor receptor-stimulated activation of phospholipase Cg-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Res. 2003, 51: 921–929.

    Google Scholar 

  6. O-charoenrat P, et al. Signaling pathways required for matrix metalloproteinase-9 induction by betacellulin in head-and-neck squamous carcinoma cells. Int. J. Cancer 2004, 111: 174–83.

    Article  PubMed  CAS  Google Scholar 

  7. Bei R, et al. Co-localization of multiple ErbB receptors in stratified epithelium of oral squamous cell carcinoma. J. Pathol. 2001, 195: 343–8.

    Article  PubMed  CAS  Google Scholar 

  8. O-charoenrat P, et al. C-erbB receptors in squamous cell carcinomas of the head and neck: clinical significance and correlation with matrix metalloproteinases and vascular endothelial growth factors. Oral Oncol. 2002, 38: 73–80.

    Article  PubMed  CAS  Google Scholar 

  9. Grandis JR, Sok JC. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol. Ther. 2004, 102: 37–46.

    Article  PubMed  CAS  Google Scholar 

  10. O-charoenrat P, et al. Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer Res. 2000, 60: 1121–8.

    PubMed  CAS  Google Scholar 

  11. O-charoenrat P, et al. Differential modulation of proliferation, matrix metalloproteinase expression and invasion of human head and neck squamous carcinoma cells by c-erbB ligands. Clin. Exp. Metastasis 1999, 17: 631–9.

    Article  PubMed  CAS  Google Scholar 

  12. Lui VW, et al. Mitogenic effects of gastrin-releasing peptide in head and neck squamous cancer cells are mediated by activation of the epidermal growth factor receptor. Oncogene, 2003, 22: 6183–93.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Q, et al. Src family kinases mediate EGFR ligand cleavage, proliferation and invasion of cancer cells. Cancer Res. In Press, 2004.

    Google Scholar 

  14. Keely PJ, et al. R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J. Cell Biol. 1999, 145: 1077–88.

    Article  PubMed  CAS  Google Scholar 

  15. Shinohara M, et al. Expression of integrins in squamous cell carcinoma of the oral cavity. Correlations with tumor invasion and metastasis. Am. J. Clin. Pathol. 1999, 111: 75–88.

    PubMed  CAS  Google Scholar 

  16. Koivisto L, et al. Integrins alpha5beta1, alphavbeta1, and alphavbeta6 collaborate in squamous carcinoma cell spreading and migration on fibronectin. Exp. Cell Res. 2000, 255: 10–7.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, et al. Functional differences between integrin alpha4 and integrins alpha5/alphav in modulating the motility of human oral squamous carcinoma cells in response to the V region and heparin-binding domain of fibronectin. Exp. Cell Res. 2004, 295: 48–58.

    Article  PubMed  CAS  Google Scholar 

  18. Maragou P, et al. Alteration of integrin expression in oral squamous cell carcinomas. Oral Dis. 1999, 5: 20–6.

    Article  PubMed  CAS  Google Scholar 

  19. Ramos DM, et al. Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix. Biol. 2002, 21: 297–307.

    Article  PubMed  CAS  Google Scholar 

  20. Thomas GJ, Jones J, Speight PM. Integrins and oral cancer. Oral Oncol. 1997, 33: 381–8.

    PubMed  CAS  Google Scholar 

  21. Mariotti A, et al. EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J. Cell Biol. 2001, 155: 447–58.

    Article  PubMed  CAS  Google Scholar 

  22. Tannergard P, et al. Tumorigenesis in colorectal tumors from patients with hereditary non-polyposis colorectal cancer. Hum. Genet. 1997, 101: 51–5.

    Article  PubMed  CAS  Google Scholar 

  23. Chen T, et al. Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int. J. Cancer 2001, 93: 653–61.

    Article  PubMed  CAS  Google Scholar 

  24. Pasini FS, et al. Transforming growth factor beta1, urokinase-type plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in head and neck squamous carcinoma and normal adjacent mucosa. Head Neck 2001, 23: 725–32.

    Article  PubMed  CAS  Google Scholar 

  25. Paterson IC, et al. Decreased expression of TGF-beta cell surface receptors during progression of human oral squamous cell carcinoma. J. Pathol. 2001, 193: 458–67.

    Article  PubMed  CAS  Google Scholar 

  26. Garrigue-Antar L, et al. Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res. 1995, 55: 3982–7.

    PubMed  CAS  Google Scholar 

  27. Muro-Cacho CA, et al. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin. Cancer Res. 2001, 7: 1618–26.

    PubMed  CAS  Google Scholar 

  28. Kim SK, et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996, 56: 2519–21.

    PubMed  CAS  Google Scholar 

  29. Lewis MP, et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br. J. Cancer 2004, 90: 822–32.

    Article  PubMed  CAS  Google Scholar 

  30. Dang D, et al. Matrix metalloproteinases and TGFbeta1 modulate oral tumor cell matrix. Biochem. Biophys. Res. Commun. 2004, 316: 937–42.

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt M, et al. Urokinase receptor up-regulation in head and neck squamous cell carcinoma. Head Neck 2000, 22: 498–504.

    Article  PubMed  CAS  Google Scholar 

  32. Nozaki S, et al. Immunohistochemical localization of a urokinase-type plasminogen activator system in squamous cell carcinoma of the oral cavity: association with mode of invasion and lymph node metastasis. Oral Oncol. 1998, 34: 58–62.

    Article  PubMed  CAS  Google Scholar 

  33. Ghosh S, et al. Loss of adhesion-regulated proteinase production is correlated with invasive activity in oral squamous cell carcinoma. Cancer 2002, 95: 2524–33.

    Article  PubMed  CAS  Google Scholar 

  34. Aguirre-Ghiso J.A, et al. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 2001, 12: 863–79.

    PubMed  CAS  Google Scholar 

  35. Peifer M. Cancer, catenins, and cuticle pattern: a complex connection. Science 1993, 262: 1667–8.

    PubMed  CAS  Google Scholar 

  36. Takeichi M. Cadherins: a molecular family essential for selective cell-cell adhesion and animal morphogenesis. Trends in Genetics 1987, 3:8: 213–217.

    Article  CAS  Google Scholar 

  37. Andrews NA, et al. Expression of the E-cadherin-catenin cell adhesion complex in primary squamous cell carcinomas of the head and neck and their nodal metastases. Br. J. Cancer 1997, 75: 1474–80.

    PubMed  CAS  Google Scholar 

  38. Berx G, Nollet F, van Roy F. Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes. Commun. 6: 171–84.

    Google Scholar 

  39. Ara T, et al. Membrane type 1-matrix metalloproteinase expression is regulated by Ecadherin through the suppression of mitogen-activated protein kinase cascade. Cancer Lett. 2000, 157: 115–21.

    Article  PubMed  CAS  Google Scholar 

  40. Bankfalvi A, et al. Gains and losses of adhesion molecules (CD44, E-cadherin, and beta-catenin) during oral carcinogenesis and tumour progression. J. Pathol. 2002, 198: 343–51.

    Article  PubMed  CAS  Google Scholar 

  41. Bankfalvi A, et al. Deranged expression of the E-cadherin/beta-catenin complex and the epidermal growth factor receptor in the clinical evolution and progression of oral squamous cell carcinomas. J. Oral Pathol. Med. 2002, 31: 450–7.

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka N, et al. Expression of E-cadherin, alpha-catenin, and beta-catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br. J. Cancer 2003, 89: 557–63.

    Article  PubMed  CAS  Google Scholar 

  43. Chow V, et al. A comparative study of the clinicopathological significance of Ecadherin and catenins (alpha, beta, gamma) expression in the surgical management of oral tongue carcinoma. J. Cancer Res. Clin. Oncol. 2001, 127: 59–63.

    Article  PubMed  CAS  Google Scholar 

  44. Chen Q, et al. Promoter methylation regulates cadherin switching in squamous cell carcinoma. Biochem. Biophys. Res. Commun. 2004, 315: 850–6.

    Article  PubMed  CAS  Google Scholar 

  45. Uchida D, et al. Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int. J. Cancer 2001, 93: 489–96.

    Article  PubMed  CAS  Google Scholar 

  46. Morello S, et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J. Cell Physiol. 2001, 189: 285–90.

    Article  PubMed  CAS  Google Scholar 

  47. Kitajo H, et al. Rho regulates the hepatocyte growth factor/scatter factor-stimulated cell motility of human oral squamous cell carcinoma cells. Oncol. Rep. 2003, 10: 1351–6.

    PubMed  CAS  Google Scholar 

  48. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 1998, 20: 745–52.

    Article  PubMed  CAS  Google Scholar 

  49. Schneider GB, et al. Elevated focal adhesion kinase expression facilitates oral tumor cell invasion. Cancer 2002, 95: 2508–15.

    Article  PubMed  CAS  Google Scholar 

  50. Lu Z, et al. Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell Biol. 2001, 21: 4016–31.

    Article  PubMed  CAS  Google Scholar 

  51. Crowe DL, Ohannessian A. Recruitment of focal adhesion kinase and paxillin to beta1 integrin promotes cancer cell migration via mitogen activated protein kinase activation. BMC Cancer 2004, 4: 18.

    Article  PubMed  Google Scholar 

  52. Cohen P, Cohen PT. Protein phosphatases come of age. J. Biol. Chem. 1989, 264: 21435–8.

    PubMed  CAS  Google Scholar 

  53. Meisinger J, et al. Protein phosphatase-2A association with microtubules and its role in restricting the invasiveness of human head and neck squamous cell carcinoma cells. Cancer Lett. 1997, 111: 87–95.

    Article  PubMed  CAS  Google Scholar 

  54. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995, 81: 323–30.

    Article  PubMed  CAS  Google Scholar 

  55. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992, 258: 424–9.

    PubMed  CAS  Google Scholar 

  56. Zhang SY, et al. E2F-1 gene transfer enhances invasiveness of human head and neck carcinoma cell lines. Cancer Res. 2000, 60: 5972–6.

    PubMed  CAS  Google Scholar 

  57. Beck K, Hunter I, Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. Faseb. J. 1990, 4: 148–60.

    PubMed  CAS  Google Scholar 

  58. Zhang K, Kramer RH. Laminin 5 deposition promotes keratinocyte motility. Exp. Cell Res. 1996, 227: 309–22.

    Article  PubMed  CAS  Google Scholar 

  59. Koshikawa N, et al. Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res. 1999, 59: 5596–601.

    PubMed  CAS  Google Scholar 

  60. Ono Y, et al. Epidermal growth factor receptor gene amplification is correlated with laminin-5 gamma2 chain expression in oral squamous cell carcinoma cell lines. Cancer Lett. 2002, 175: 197–204.

    Article  PubMed  CAS  Google Scholar 

  61. Borradori L, Sonnenberg A. Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 1999, 112: 411–8.

    Article  PubMed  CAS  Google Scholar 

  62. Parikka M, et al. Alterations of collagen XVII expression during transformation of oral epithelium to dysplasia and carcinoma. J. Histochem. Cytochem. 2003, 51: 921–9.

    PubMed  CAS  Google Scholar 

  63. Herold-Mende C, et al. Metastatic growth of squamous cell carcinomas is correlated with upregulation and redistribution of hemidesmosomal components. Cell Tissue Res. 2001, 306: 399–408.

    Article  PubMed  CAS  Google Scholar 

  64. Tsukita S, Yonemura S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 1997, 9: 70–5.

    Article  PubMed  CAS  Google Scholar 

  65. Yonemura S, et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 1998, 140: 885–95.

    Article  PubMed  CAS  Google Scholar 

  66. Kobayashi H, et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin. Cancer Res. 2004, 10: 572–80.

    Article  PubMed  CAS  Google Scholar 

  67. Moriyama-Kita M, et al. Correlation of S100A4 expression with invasion and metastasis in oral squamous cell carcinoma. Oral Oncol. 2004, 40: 496–500.

    Article  PubMed  CAS  Google Scholar 

  68. Imanishi Y, et al. Clinical significance of expression of membrane type 1 matrix metalloproteinase and matrix metalloproteinase-2 in human head and neck squamous cell carcinoma. Hum. Pathol. 2000, 31: 895–904.

    Article  PubMed  CAS  Google Scholar 

  69. Magary SP, et al. Expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases in laryngeal and pharyngeal squamous cell carcinoma: A quantitative analysis. Otolaryngol. Head Neck Surg. 2000, 122: 712–6.

    Article  PubMed  CAS  Google Scholar 

  70. Tomita T, et al. Granulocyte-macrophage colony-stimulating factor upregulates matrix metalloproteinase-2 (MMP-2) and membrane type-1 MMP (MT1-MMP) in human head and neck cancer cells. Cancer Lett. 2000, 156: 83–91.

    Article  PubMed  CAS  Google Scholar 

  71. Kawashiri S, et al. Development of a new invasion and metastasis model of human oral squamous cell carcinomas. Eur. J. Cancer B. Oral Oncol. 1995, 31: 216–21.

    Article  Google Scholar 

  72. Zhang X, et al. A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 2002, 95: 1663–72.

    Article  PubMed  Google Scholar 

  73. O’Malley BW, Jr., et al. A new immunocompetent murine model for oral cancer. Arch. Otolaryngol. Head Neck Surg. 1997, 123: 20–4.

    PubMed  Google Scholar 

  74. Chung CH, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004, 5: 489–500.

    Article  PubMed  CAS  Google Scholar 

  75. Schmalbach CE, et al. Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 2004, 130: 295–302.

    Article  PubMed  Google Scholar 

  76. Lin Y, et al. Transfusion of ABO-nonidentical platelets is not associated with adverse clinical outcomes in cardiovascular surgery patients. Transfusion 2002, 42: 166–72.

    Article  PubMed  Google Scholar 

  77. Nemunaitis J, et al. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: selection of a biologically active and tolerable dose for longer-term studies. Clin. Cancer Res. 1998, 4: 1101–9.

    PubMed  CAS  Google Scholar 

  78. O-charoenrat P, Rhys-Evans P, Eccles S. A synthetic matrix metalloproteinase inhibitor prevents squamous carcinoma cell proliferation by interfering with epidermal growth factor receptor autocrine loops. Int. J. Cancer 2002, 100: 527–33.

    Article  PubMed  CAS  Google Scholar 

  79. Maekawa K, et al. Inhibition of cervical lymph node metastasis by marimastat (BB-2516) in an orthotopic oral squamous cell carcinoma implantation model. Clin. Exp. Metastasis 2002, 19: 513–8.

    Article  PubMed  CAS  Google Scholar 

  80. Wu Y, et al. Inhibition of head and neck squamous cell carcinoma growth and invasion by the calcium influx inhibitor carboxyamido-triazole. Clin. Cancer Res. 3: 1915–21.

    Google Scholar 

  81. Chikamatsu K, et al. Immunotherapy with effector cells and IL-2 of lymph node metastases of human squamous-cell carcinoma of the head and neck established in nude mice. Int. J. Cancer 1999, 82: 532–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Thomas, S.M., Grandis, J.R. (2006). Motility in Head and Neck Carcinoma. In: Wells, A. (eds) Cell Motility in Cancer Invasion and Metastasis. Cancer Metastasis - Biology and Treatment, vol 8. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4009-1_11

Download citation

Publish with us

Policies and ethics