Skip to main content

Molecular Developments in the Treatment of Renal Fibrosis

  • Chapter
Fibrogenesis: Cellular and Molecular Basis

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 404 Accesses

Abstract

Progressive renal disease is associated with the development of fibrosing lesions not only in the glomerulus, but also in the interstitial and vascular compartments of the kidney, in a process that involves the mesenchymally derived, phenotypically similar, mesangial cell, myofibroblast and vascular smooth muscle cell. The similarities in the pathogenesis of all three processes means that the search for rational treatment strategies for any one may be of universal benefit to the others.

Potential therapeutic strategies target fibrosis both indirectly and directly. Indirect therapies alter the environment the kidney operates in such as by controlling blood pressure, hyperlipidemia and hyperglycaemia. As our understanding of the mechanisms of fibrosis increase, we are developing more direct treatment strategies that target the vasoactive mediators, growth factors and cell signaling pathways that regulate renal fibrogenesis. Finally attempts to increase collagen degradation and maintain blood supply are likely to reduce the damage resulting from aberrant collagen synthesis.

The continuing advances in cellular and molecular biology mean that we are becoming more aware of how cells interrelate with each other and their environment. Measures that specifically interfere with fibrosis can therefore be expected to improve prognosis not only in progressive renal failure but also in progressive fibrosing diseases in many other organs.

Progressive renal disease is associated with the concurrent development of fibrosing lesions not only in the glomerulus, but also in the interstitial and vascular compartments of the kidney (Fig. 1). Though attention is usually directed separately to the three processes—glomerulosclerosis, tubulointerstitial fibrosis and vascular sclerosis—all three eventually occur and the fundamental pathology is similar.

Renal fibrosis or sclerosis refers to the replacement of renal parenchyma with connective tissue, in a process that resembles the generalised chronic inflammation that occurs elsewhere. Initiating injury, recruitment of inflammatory cells (neutrophils, macrophages, T-cells), generation and release of profibrotic growth factors, proliferation and matrix synthesis, and finally matrix remodelling are the sequential but overlapping events. Increases in both the number and activity of matrix producing cells is responsible for matrix deposition, with the balance between this and remodelling determining the extent of scarring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diamond JR, Karnovsky MJ. Focal and segmental glomerulosclerosis: Analogies to atherosclerosis. Kidney Int 1988; 33:917–924.

    PubMed  CAS  Google Scholar 

  2. Cybulsky AV. Growth factor pathways in proliferative glomerulonephritis. Curr Opin Nephrol Hypertension 2000; 9:217–223.

    Article  CAS  Google Scholar 

  3. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 1996; 49:1774–1777.

    PubMed  CAS  Google Scholar 

  4. Wardle N. Glomerulosclerosis: The final pathway is clarified, but can we deal with the triggers? Nephron 1996; 73:1–7.

    PubMed  CAS  Google Scholar 

  5. Harris RC, Akai Y, Yasuda T et al. The role of physical forces in alterations of mesangial cell function. Kidney Int 1994; 45(s45):s17–s21

    CAS  Google Scholar 

  6. Johnson RJ, Alpers CE, Yoshimura A et al. Renal injury from angiotensin II-mediated hypertension. Hypertension 1992; 19:464–474.

    PubMed  CAS  Google Scholar 

  7. Gomez-Garre D, Ruiz-Ortega M, Ortego M et al. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension 1996; 27:885–892.

    PubMed  CAS  Google Scholar 

  8. Hahn S, Krieg RJ, Hisano S et al. Vitamin E suppresses oxidative stress and glomerulosclerosis in rat remnant kidney. Pediatr Nephrol 1999; 13:195–198.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson RJ, Floege J, Couser WG et al. Role of platelet-derived growth factor in glomerular disease. J Am Soc Nephrol 1993; 4:119–128.

    PubMed  CAS  Google Scholar 

  10. Isaka Y, Akagi Y, Ando Y et al. Cytokines and glomerulosclerosis. Nephrol Dial Transplant 1999; 14:30–32.

    Article  PubMed  CAS  Google Scholar 

  11. Risdon RA, Sloper JC, de Wardener HE. Relationship between renal function and histological changes found in renal biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968; I:363–366.

    Article  Google Scholar 

  12. Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertension 2000; 9:133–148.

    Article  CAS  Google Scholar 

  13. Healy E, Brady HR. Role of tubule epithelial cells in the pathogenesis of tubulointerstitial fibrosis induced by glomerular disease. Curr Opin Nephrol Hypertension 1998; 7:525–530.

    Article  CAS  Google Scholar 

  14. Johnson DW, Saunders HJ, Baxter RC et al. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int 1998; 54:747–757.

    Article  PubMed  CAS  Google Scholar 

  15. Ong ACM. Tubulointerstitial actions of endothelins in the kidney: Roles in health and disease. Nephrol Dial Transplant 1996; 11:251–257.

    PubMed  CAS  Google Scholar 

  16. Sahai M, Mei C, Schrier RW et al. Mechanisms of chronic hypoxia-induced renal cell growth. Kidney Int 1999; 56:1277–1288.

    Article  PubMed  CAS  Google Scholar 

  17. Fine LG, Orphanides C, Norman JT. Progressive renal disease: The chronic hypoxia hypothesis. Kidney Int 1998; 53:S74–S78

    Google Scholar 

  18. Nath KA, Hostetter MK, Hostetter TH. Increased ammoniagenesis as a determinant of progressive renal injury. Am J Kidney Dis 1991; 17:654–657.

    PubMed  CAS  Google Scholar 

  19. Lindner A, Charra B, Sherrard DJ et al. Accelerated Atherosclerosis in Prolonged Maintenance Hemodialysis. N Engl J Med 1974; 290 No. 13:697–701.

    Article  PubMed  CAS  Google Scholar 

  20. Bos WJW, Demircan MM, Weening JJ et al. Renal vascular changes in renal disease independent of hypertension. Nephrol Dial Transplant 2001; 16:537–541.

    Article  PubMed  CAS  Google Scholar 

  21. Striker LM-M, Killen PD, Chi E et al. The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest 1984; 51:181–191.

    PubMed  Google Scholar 

  22. Johnson RJ, Floege J, Yoshimura A et al. The activated mesangial cell: A glomerular “myofibroblast”? J Am Soc Nephrol 1992; 2:s190–s197

    PubMed  CAS  Google Scholar 

  23. Johnson RJ, Lida H, Alpers E et al. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest 1991; 87:847–858.

    PubMed  CAS  Google Scholar 

  24. Alpers CE, Hudkins KL, Gown AM et al. Enhanced expression of “muscle-specific” actin in glomerulonephritis. Kidney Int 1992; 41:1134–1142.

    PubMed  CAS  Google Scholar 

  25. Stokes MB, Holler S, Cui Y et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int 2000; 57:487–498.

    Article  PubMed  CAS  Google Scholar 

  26. Couser WG, Johnson RJ. Mechanisms of progressive renal disease in glomerulonephritis. Am J Kidney Dis 1994; 23:193–198.

    PubMed  CAS  Google Scholar 

  27. Oldfield MD, Bach LA, Forbes JM et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001; 108:1853–1863.

    Article  PubMed  CAS  Google Scholar 

  28. Cunningham MA, Rondeau E, Chen X et al. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J Exp Med 2000; 191:455–461.

    Article  PubMed  CAS  Google Scholar 

  29. Hewitson T, Wu H, Becker GJ. Interstitial myofibroblasts in experimental renal infection and scarring. Am J Nephrol 1995; 15:411–417.

    PubMed  CAS  Google Scholar 

  30. Wiggins R, Goyal M, Merritt S et al. Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. Lab Invest 1993; 68:557–565.

    PubMed  CAS  Google Scholar 

  31. Jinde K, Nikolic-Paterson DJ, Huang XR et al. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis 2001; 38:761–769.

    PubMed  CAS  Google Scholar 

  32. Grimm PC, Nickerson P, Jeffery J et al. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med 2001; 345:93–97.

    Article  PubMed  CAS  Google Scholar 

  33. Alpers CE, Hudkins KL, Floege J et al. Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury. J Am Soc Nephrol 1994; 5:201–210.

    PubMed  CAS  Google Scholar 

  34. Goumenos DS, Brown CB, Shortland J et al. Myofibroblasts, predictors of progression of mesangial IgA nephropathy? Nephrol Dial Transplant 1994; 9:1418–1425.

    PubMed  CAS  Google Scholar 

  35. Hewitson TD, Becker GJ. Interstitial myofibroblasts in IgA glomerulonephritis. Am J Nephrol 1995; 15:111–117.

    PubMed  CAS  Google Scholar 

  36. Tang WW, Van GY, Qi M. Myofibroblast and α1(III) collagen expression in experimental tubulointerstitial nephritis. Kidney Int 1997; 51:926–931.

    PubMed  CAS  Google Scholar 

  37. Han DC, Isono M, Hoffman BB et al. High glucose stimulates proliferation and collagen I synthesis in renal cortical fibroblasts: Mediation by autocrine activation of TGFbeta progression. J Am Soc Nephrol 1999; 10:1891–1899.

    PubMed  CAS  Google Scholar 

  38. Strutz F, Zeisberg M, Hemmerlein B et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int 2000; 57:1521–1538.

    Article  PubMed  CAS  Google Scholar 

  39. Endlich N, Endlich K, Taesch N et al. Culture of vascular smooth muscle cells from arteries of the rat kidney. Kidney Int 2000; 57:2468–2475.

    Article  PubMed  CAS  Google Scholar 

  40. Betz E, Faller-Becker P, Wolberg-Buchholz K et al. Proliferation of smooth muscle cells in the inner and outer layers of the tunica media of arteries: an in vitro study. J Cell Physiol 1991; 147:385–395.

    Article  PubMed  CAS  Google Scholar 

  41. Dilley RJ, McGeachie JK, Prendergast FJ. A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis 1987; 63:99–107.

    Article  PubMed  CAS  Google Scholar 

  42. Akyürek LM, Paul LC, Funa K et al. Smooth muscle cell migration into intima and adventitia during development of transplant vasculopathy. Transplantation 1996; 62:1526–1529.

    Article  PubMed  Google Scholar 

  43. Kanse SM, Wijelath E, Kanthou C et al. The proliferative responsiveness of human vascular smooth muscle cells to endothelin correlates with endothelin receptor density. Lab Invest 1995; 72:376–382.

    PubMed  CAS  Google Scholar 

  44. Greene EL, Lu G, Zhang D et al. Signaling events mediating the additive effects of olsic acid and angiotensin II on vascular smooth muscle migration. Hypertension 2001; 37:308–312.

    PubMed  CAS  Google Scholar 

  45. Nabel EG, Yang Z, Liptay S et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induces intimal hyperplasia in vivo. J Clin Invest 1993; 91:1822–1829.

    PubMed  CAS  Google Scholar 

  46. Okada Y, Katsuda S, Watanabe H et al. Collagen synthesis of human arterial smooth muscle cells: Effects of platelet-derived growth factor, transforming growth factor-beta 1 and interleukin-1. Acta Pathol Jpn 2001; 43:160–167.

    Google Scholar 

  47. Campbell JH, Campbell GR. Cell biology of atherosclerosis. J Hypertens 1994; 12(Suppl 10):S129–S132

    CAS  Google Scholar 

  48. Kelynack KJ, Hewitson TD, Nicholls KM et al. Human renal fibroblast contraction of collagen I lattices is an integrin mediated process. Nephrol Dial Transplant 2000; 15:1766–1772.

    Article  PubMed  CAS  Google Scholar 

  49. Kitamura M, Maruyama N, Mitarai T et al. Extracellular matrix contraction by cultured mesangial cells: Modulation by transforming growth factor-beta and matrix components. Exp Mol Pathol 1992; 56:132–143.

    Article  PubMed  CAS  Google Scholar 

  50. Hewitson TD, Darby IA, Bisucci T et al. Evolution of tubulointerstitial fibrosis in experimental renal infection and scarring. J Am Soc Nephrol 1998; 9:632–642.

    PubMed  CAS  Google Scholar 

  51. Ronnov-Jessen L, Peterson OW. A function for filamentous alpha smooth muscle actin: Retardation of motility in fibroblasts. J Cell Biol 1996; 134:67–80.

    Article  PubMed  CAS  Google Scholar 

  52. Petrov VV, Fagard RH, Lijnen S. Stimulation of collagen production by transforming growth factor-β during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 2002; 39:258–263.

    Article  PubMed  CAS  Google Scholar 

  53. Schnaper HW, Hayashida T, Poncelet A-C. It’s a Smad World: Regulation of TGF-β signaling in the kidney. J Am Soc Nephrol 2002; 13:1126–1128.

    PubMed  CAS  Google Scholar 

  54. Floege J. Glomerular remodelling: Novel therapeutic approaches derived from the apparently chaotic growth factor network. Nephron 2002; 91:582–587.

    Article  PubMed  CAS  Google Scholar 

  55. Fellstrom B, Klareskog L, Heldin CH et al. Platelet-derived growth factor receptors in the kidney-upregulated expression in inflammation. Kidney Int 1989; 36:1099–1102.

    PubMed  CAS  Google Scholar 

  56. Khwaja A, Connolly JO, Hendry BM. Prenylation inhibitors in renal disease. Lancet 2000; 355:741–744.

    Article  PubMed  CAS  Google Scholar 

  57. Yasuda T, Kondo S, Owada M et al. Integrins and the cytoskeleton: Focal adhesion kinase and paxillin. Nephrol Dial Transplant 2002; 14:58–60.

    Article  Google Scholar 

  58. Mann DA, Smart DE. Transcriptional regulation of hepatic cell activation. Gut 2002; 50:891–896.

    Article  PubMed  CAS  Google Scholar 

  59. Guijarro C, Egido J. Transcription factor-κB (NF-κB) and renal disease. Kidney Int 2001; 59:415–424.

    Article  PubMed  CAS  Google Scholar 

  60. Klahr S, Morrissey JJ. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int 2000; suppl 75:s7–s14

    Article  Google Scholar 

  61. Mayer DC, Leinwand LA. Sarcomeric gene expression and contractility in myofibroblasts. J Cell Biol 1997; 139:1477–1484.

    Article  PubMed  CAS  Google Scholar 

  62. Rovin BH. Chemokine blockade as a therapy for renal disease. Curr Opin Nephrol Hypertension 2000; 13:225–232.

    Article  Google Scholar 

  63. Vesey DA, Cheung CWY, Cuttle L et al. Interleukin-1β induces human proximal tubule cell injury, α-smooth muscle actin expression and fibronectin production. Kidney Int 2002; 62:31–40.

    Article  PubMed  CAS  Google Scholar 

  64. Zoja C, Corna D, Benedetti G et al. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney Int 1998; 53:726–734.

    Article  PubMed  CAS  Google Scholar 

  65. Panzer U, Thaiss F, Zahner G et al. Monocyte chemoattractant protein-1 and osteopontin differentially regulate monocytes recruitment iin experimental glomerulonephritis. Kidney Int 2002; 59:1762–1769.

    Article  Google Scholar 

  66. Grone H-J, Weber C, Weber KSC et al. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: Blocking monocyte arrest and recruitment. FASEB J 1999; 13:1371–1383.

    PubMed  CAS  Google Scholar 

  67. Becker GJ, Whitworth JA, Ihle BU et al. Prevention of progression in nondiabetic chronic renal failure. Kidney Int 1994; 45Suppl. 45:S167–S170

    CAS  Google Scholar 

  68. Burgess E. Conservative treatment to slow deterioration of renal function: Evidence-based recommendations. Kidney Int 1999; 55:S17–S25

    Article  Google Scholar 

  69. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: The role of haemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in ageing, renal ablation and intrinsic renal disease. N Engl J Med 1982; 307:652–659.

    Article  PubMed  CAS  Google Scholar 

  70. Heidland A, Sebekova K, Ling H. Effect of low-protein diets on renal disease: Are nonhaemodynamic factors involved? Nephrol Dial Transplant 1995; 1512–1514.

    Google Scholar 

  71. Herbert LA, Kusek JW, Greene T et al. Effect of blood pressure control on progressive renal disease in black and whites. Hypertension 1997; 30:428–435.

    Google Scholar 

  72. Klahr S. Role of dietary protein and blood pressure in the progression of renal disease. Kidney Int 1996; 49:1783–1786.

    PubMed  CAS  Google Scholar 

  73. Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney Int 2001; 59:260–269.

    Article  PubMed  CAS  Google Scholar 

  74. Schlöndorff D. Cellular mechanisms of lipid injury in the glomerulus. Am J Kidney Dis 1993; 22:72–82.

    PubMed  Google Scholar 

  75. Buemi M, Senatore M, Corica F et al. Are there potential nonlipid-lowering uses of statins in the kidney? Nephron 2001; 89:363–368.

    Article  PubMed  CAS  Google Scholar 

  76. Nishimura M, Tanaka T, Yasuda T et al. Effect of pravastatin on type IV collagen secretion and mesangial cell proliferation. Kidney Int 1999; 56suppl. 71:s97–s100.

    Article  Google Scholar 

  77. Kelynack KJ, Hewitson TD, Martic M et al. Lovastatin downregulates renal myofibroblast function in vitro. Nephron 2002; 91:701–709.

    Article  PubMed  CAS  Google Scholar 

  78. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins. JAMA 1998; 279:1643–1650.

    Article  PubMed  CAS  Google Scholar 

  79. The diabetes control and complications trial research group:The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Eng J Med 1993; 329:977–986.

    Article  Google Scholar 

  80. Kim YS, Kim BC, Song CY et al. Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transformaing growth factor-beta. J Lab Clin Med 2002; 138:59–68.

    Article  Google Scholar 

  81. Matsubara H, Sugaya T, Murasawa S et al. Tissue-specific expression of human angiotensin II AT1 and AT2 receptors and cellular localization of subtype mRNAs in adult human renal cortex using in situ hybridization. Nephron 1998; 80:25–34.

    Article  PubMed  CAS  Google Scholar 

  82. Ruiz-Ortega M, Egido J. Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int 1997; 52:1497–1510.

    PubMed  CAS  Google Scholar 

  83. Nahman S, Rothe KL, Falkenhain ME et al. Angiotensin II induction of fibronectin biosynthesis in cultured human mesangial cells-association with CREB transcription factor activation. J Lab Clin Med 1996; 127:599–611.

    Article  PubMed  CAS  Google Scholar 

  84. Orth SR, Weinreich T, Bonisch S et al. Angiotensin II induces hypertrophy and hyperplasia in adult human mesangial cells. Exp Nephrol 1995; 3:23–33.

    PubMed  CAS  Google Scholar 

  85. Mifune M, Sasamura H, Shimizu-Hirota R et al. Angiotensin II type 2 receptors stimulate collagen synthesis in cultures vascular smooth muscle cells. Hypertension 2000; 36:845–850.

    PubMed  CAS  Google Scholar 

  86. Jafar TH, Schmid CH, Landa M et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. Ann Intern Med 2002; 135:73–87.

    Google Scholar 

  87. Hilgers KF, Mann JFE. ACE inhibitors versus AT1 receptor antagonists in patients with chronic renal disease. J Am Soc Nephrol 2002; 13:1100–1108.

    PubMed  CAS  Google Scholar 

  88. Ferrer P, Valentine M, Jenkins-West T et al. Orally active endothelin receptor antagonist BMS-182874 suppresses neointimal development in balloon-injured rat carotid arteries. J Cardiovasc Pharmacol 1995; 26:908–915.

    Article  PubMed  CAS  Google Scholar 

  89. Fukuda K, Yanagida T, Okuda K et al. Role of endothelin as a mitogen in experimental glomerulonephritis in rats. Kidney Int 2001; 49:1320–1329.

    Google Scholar 

  90. Forbes JM, Leaker B, Hewitson TD et al. Macrophage and myofibroblast involvement in ischemic acute renal failure is attenuated by endothelin receptor antagonists. Kidney Int 1999; 55:198–208.

    Article  PubMed  CAS  Google Scholar 

  91. Forbes JM, Hewitson TD, Becker G et al. Simultaneous blockade of endothelin A and B receptors in ischaemic acute renal failure is detrimental to long term kidney function. Kidney Int 2001; 59:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  92. Morrissey JJ, Ishidoya S, McCracken R et al. Nitric oxide generation ameliorates the tubulointerstitial fibrosis of obstructive nephropathy. J Am Soc Nephrol 1996; 7:2202–2212.

    PubMed  CAS  Google Scholar 

  93. Haller H. Calcium antagonists and cellular mechanisms of glomerulosclerosis and atherosclerosis. Am J Kidney Dis 1993; 21 No.6 Suppl 3:26–31.

    PubMed  CAS  Google Scholar 

  94. Ono T, Liu N, Kusano H et al. Broad antiproliferative effects of benidipine on cultured human mesangial cells in cell cycle phases. Am J Nephrol 2002; 22:581–586.

    Article  PubMed  Google Scholar 

  95. Epstein M. Calcium antagonists and renal disease. Kidney Int 1998; 54:1771–1784.

    Article  PubMed  CAS  Google Scholar 

  96. Akagi Y, Isaka Y, Arai M et al. Inhibition of TGF-beta 1 expression by antisense oligonucleotides suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int 1996; 50:148–155.

    PubMed  CAS  Google Scholar 

  97. Isaka Y, Tsujie M, Ando Y et al. Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000; 58:1885–1892.

    Article  PubMed  CAS  Google Scholar 

  98. Border WA, Okuda S, Languino LR et al. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 1990; 346:371–374.

    Article  PubMed  CAS  Google Scholar 

  99. Wolf YG, Rasmussen LM, Ruoslahti E. Antibodies against transforming growth factor-betal suppresses intimal hyperplasia in a rat model. J Clin Invest 1994; 93:1172–1178.

    PubMed  CAS  Google Scholar 

  100. Shimizu T, Fukagawa M, Kuroda T et al. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int 1997; 52:S239–S243.

    Google Scholar 

  101. Border WA, Noble NA, Yamamoto T et al. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 1992; 360:361–364.

    Article  PubMed  CAS  Google Scholar 

  102. Shihab FS, Bennett WM, Tanner AM et al. Angiotensin II blockade decreases TGF-β1 and matrix proteins in cyclosporine nephropathy. Kidney Int 1997; 52:660–673.

    PubMed  CAS  Google Scholar 

  103. Peters H, Border WA, Noble NA. Targeting TGF-β overexpression in renal disease: Maximizing the antifibrotic action of angiotensin II blockade. Kidney Int 1998; 54:1570–1580.

    Article  PubMed  CAS  Google Scholar 

  104. Li JH, Zhu H-J, Huang XR et al. Smad7 inhibits fibrotic effects of TGF-β on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 2002; 13:1464–1472.

    Article  PubMed  CAS  Google Scholar 

  105. Clarkson MR, Gupta S, Murphy M et al. Connective tissue growth factor: A potential stimulus for glomerulosclerosis and tubulointerstitial fibrosis in progressive renal disease. Curr Opin Nephrol Hypertension 1999; 8:543–548.

    Article  CAS  Google Scholar 

  106. Matsumoto K, Nakamura T. Hepatocyte growth factor: Renotropic role and potential therapeutics for renal diseases. Kidney Int 2001; 59:2023–2038.

    PubMed  CAS  Google Scholar 

  107. Mizuno S, Matsumoto K, Nakamura T. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int 2001; 59:1304–1314.

    Article  PubMed  CAS  Google Scholar 

  108. Morrissey J, Kruska K, Guo G et al. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 2002; 13:S14–S21.

    Article  PubMed  CAS  Google Scholar 

  109. Ostendorf T, Kunter U, Grone HJ et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 2001; 12:909–918.

    PubMed  CAS  Google Scholar 

  110. Gilbert RE, Kelly DJ, McKay T et al. PDGF signal transduction ameliorates experimental mesangial proliferative glomerulonephritis. Kidney Int 2001; 59:1324–1332.

    Article  PubMed  CAS  Google Scholar 

  111. Ludewig D, Kosmehl H, Sommer M et al. PDGF receptor kinase blocker AG1295 attenuates interstitial fibrosis in rat kidney after unilateral obstruction. Cell Tissue Res 2000; 299:97–103.

    Article  PubMed  CAS  Google Scholar 

  112. Britton RS, Bacon BR. Intracellular signaling pathways in stellate cell activation. Alcohol Clin Exp Res 1999; 23:922–925.

    PubMed  CAS  Google Scholar 

  113. Tomita N, Morishita R, Lan HY et al. In vivo administration of a nuclear transcription factor-kappaB decoy suppresses experimental crescentic gomerulonephritis. J Am Soc Nephrol 2000; 11:1244–1252.

    PubMed  CAS  Google Scholar 

  114. Zheng F, Fornoni A, Elliot SJ et al. Upregulation of type I collagen by TGFβ in mesangial cella is blocked by PPARγ activation. Am J Physiol Renal Physiol 2002; 282:F639–F648.

    PubMed  CAS  Google Scholar 

  115. McCarthy KJ, Routh RE, Shaw W et al. Troglitazone halts diabetic glomerulosclerosis by blockade of mesangial expansion. Kidney Int 2000; 58:2341–2350.

    Article  PubMed  CAS  Google Scholar 

  116. Ma L-J, Marcantoni C, Linton MF et al. Peroxisome proliferator-activated receptor-γ agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 2001; 59:1899–1910.

    Article  PubMed  CAS  Google Scholar 

  117. Johnson DW, Saunders HJ, Field MJ et al. In vitro effects of simvastatin on tubulointerstitial cells in a human model of cyclosporin nephrotoxicity. Am J Physiol 1999; 276:F467–F475

    PubMed  CAS  Google Scholar 

  118. Sharpe CC, Dockrell ME, Scott R et al. Evidence of a role of Ki-RAS in the stimulated proliferation of renal fibroblasts. J Am Soc Nephrol 1999; 10:1186–1192.

    PubMed  CAS  Google Scholar 

  119. O’Donnell MP. Renal tubulointerstitial fibrosis: New thoughts on its development and progression. Postgrad Med 2000; 108:159–172.

    PubMed  CAS  Google Scholar 

  120. Tsai T-J, Lin R-H, Chang C-C et al. Vasodilator agents modulate rat glomerular mesangial cell growth and collagen synthesis. Nephron 1995; 70:91–99.

    Article  PubMed  CAS  Google Scholar 

  121. Hewitson TD, Martic M, Kelynack KJ et al. Pentoxifylline reduces in vitro renal myofibroblast proliferation and collagen secretion. Am J Nephrol 2000; 20:82–88.

    Article  PubMed  CAS  Google Scholar 

  122. Strutz F, Heeg M, Kochsiek T et al. Effects of pentoxifylline, pentifylline and gamma-interferon on proliferation, differentiation, and matrix synthesis of human renal fibroblasts. Nephrol Dial Transplant 2000; 15:1535–1546.

    Article  PubMed  CAS  Google Scholar 

  123. Lin S-L, Chen Y-M, Chien C-T et al. Pentoxifylline attenuated the renal disease progression in rats with remnant kidney. J Am Soc Nephrol 2002; 13:2916–2929.

    Article  PubMed  CAS  Google Scholar 

  124. Hillis GS, Duthie LA, MacLeod AM. Dipyridamole inhibits human mesangial cell proliferation. Nephron 1998; 78:172–178.

    Article  PubMed  CAS  Google Scholar 

  125. Himmelfarb J, Couper L. Dipyridamole inhibits PDGF-and bFGF-induced vascular smooth muscle cell proliferation. Kidney Int 1997; 52:1671–1677.

    PubMed  CAS  Google Scholar 

  126. Hewitson TD, Tait MG, Martic M et al. Dipyridamole inhibits in vitro renal myofibroblast proliferation and collagen synthesis. J Lab Clin Med 2002; 140:199–208.

    Article  PubMed  CAS  Google Scholar 

  127. Olson JL. Role of heparin as a protective agent following reduction in renal mass. Kidney Int 1984; 25:376–382.

    PubMed  CAS  Google Scholar 

  128. Castellot JJ, Hoover RL, Harper PA et al. Heparin and glomerular epithelial cell-secreted heparin like species inhibit mesangial cell proliferation. Am J Pathol 1985; 120:427–435.

    PubMed  CAS  Google Scholar 

  129. Tiozzo R, Reggiani D, Cingi MR et al. Effect of heparin derived fractions on the proliferation and protein synthesis of cells in culture. Throm Res 1991; 62:177–188.

    Article  CAS  Google Scholar 

  130. Hoover RL, Rosenberg RD, Haering W et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. in vivo studies. Circ Res 1980; 47:578–583.

    PubMed  CAS  Google Scholar 

  131. Nagler A, Katz A, Aingorn H et al. Inhibition of glomerular mesangial cell proliferation and extracellular matrix deposition by halofuginone. Kidney Int 2001; 52:1561–1569.

    Google Scholar 

  132. Nagler A, Miao H-Q, Aimgorn H et al. Inhibition of collagen synthesis, smooth muscle cell proliferation and injury induced hyperplasia by halofuginone. Arterioscler Thromb Vasc Biol 1997; 17:194–202.

    PubMed  CAS  Google Scholar 

  133. Gregory CR, Huang X, Pratt RE et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. Transplantation 1995; 59:655–661.

    Article  PubMed  CAS  Google Scholar 

  134. Hauser IA, Renders L, Radeke H-H et al. Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. Nephrol Dial Transplant 1999; 14:58–63.

    Article  PubMed  CAS  Google Scholar 

  135. Badid C, Vincent M, McGregor B et al. Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney. Kidney Int 2000; 58:51–61.

    Article  PubMed  CAS  Google Scholar 

  136. Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 1997; 29:79–89.

    Article  PubMed  CAS  Google Scholar 

  137. Bani D. Relaxin: A pleiotropic hormone. Gen.Pharmac 1997; 28:13–22.

    CAS  Google Scholar 

  138. Garber SL, Mirochnik Y, Brecklin CS et al. Relaxin decreases renal interstitial fibrosis and slows progression of renal disease. Kidney Int 2001; 59:876–882.

    Article  PubMed  CAS  Google Scholar 

  139. Garber SL, Mirochnik Y, Brecklin C et al. Effect of relaxin in two models of renal mass reduction. Am J Nephrol 2002; 2003:8–12.

    Google Scholar 

  140. Unemori EN, Pickford LB, Salles AL et al. Relaxin induces an extracellular matrix degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest 1996; 98:2739–2745.

    Article  PubMed  CAS  Google Scholar 

  141. Masterson R, Hewitson TD, Kelynack KJ et al. Relaxin downregulates renal fibroblast function and stimulates matrix remodelling in vitro. Nephrol Dial Transplant 2004; 19:544–52.

    Article  PubMed  CAS  Google Scholar 

  142. Shimizu F, Fukagawa M, Yamauchi S et al. Pirfenidone prevents the progression of irreversible glomerular sclerotic lesions in rats. Nephrology 1997; 3:315–322.

    CAS  Google Scholar 

  143. Shimizu T, Kuroda T, Hata S et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int 1998; 54:99–109.

    Article  PubMed  CAS  Google Scholar 

  144. Fukagawa M, Noda M, Shimizu T et al. Chronic progressive interstitial fibrosis in renal disease-are there novel pharmacological approaches? Nephrol Dial Transplant 1999; 14:2793–2795.

    Article  PubMed  CAS  Google Scholar 

  145. Kang DH, Hughes J, Mazzali M et al. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 2001; 12:1448–1457.

    PubMed  CAS  Google Scholar 

  146. Msuda Y, Shimizu A, Mori T et al. Vascular endothelial growth factor enhances glomerular capillary repair and accelerates resolution of experimentally induced glomerulonephritis. Am J Pathol 2001; 159:599–608.

    Google Scholar 

  147. Mori T, Shimizu A, Masuda Y et al. Hepatocyte growth factor stimulates endothelial proliferation and accelerates angiogenic capillary repair in experimental progressive glomerulonephritis (abstract). J Am Soc Nephrol 2000; 11:495A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Becker, G.J., Hewitson, T.D. (2005). Molecular Developments in the Treatment of Renal Fibrosis. In: Fibrogenesis: Cellular and Molecular Basis. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26476-0_6

Download citation

Publish with us

Policies and ethics