Skip to main content

Oxidative Stress, Lipoproteins and Angiotensin II

The Unholy Triad in the Pathogenesis of Renal Fibrosis

  • Chapter
Fibrogenesis: Cellular and Molecular Basis

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 410 Accesses

Abstract

Renal fibrosis usually indicates irreversible tissue damage, irrespective of the initial cause. Thus, it is most relevant to understand mechanisms leading to renal fibrosis. Oxidative stress has emerged as an important factor contributing to tissue damage, and oxidative stress is enhanced in a variety of inflammatory disease states relevant for the kidney. It is therefore the purpose of this chapter to discuss the role of oxidative stress in the development of renal fibrosis. Inflammation is generally associated with enhanced oxidative stress, and since multiple factors contribute to inflammation [such as cytokines (e.g., interleukin-6, tumor necrosis factor α), infection, ischemia reperfusion injury, homocysteine, advanced glycation end products, atherogenic lipoproteins, or angiotensin II], multiple factors can cause enhanced oxidative stress. Here we will focus on the role of atherogenic lipoproteins, particularly oxidized low density lipoproteins, and the activated renin angiotensin system, for several reasons: firstly, these factors are well characterized as proinflammatory and as stimulators of superoxide-generating enzymes; secondly, the contribution of these factors to tubulointerstitial fibrosis has frequently been described; and thirdly, we already possess pharmacological tools to efficiently lower their activity. Thus, this chapter highlights the interplay of oxidative stress, atherogenic lipoproteins, and the renin angiotensin system in the pathophysiology of renal fibrosis and discusses potential treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ichikawa I, Kiyama S, Yoshioka T. Renal antioxidant enzymes: Their regulation and function. Kidney Int 1994; 45:1–9.

    CAS  PubMed  Google Scholar 

  2. Witko Sarsat V, Friedlander M, Capeillere Blandin CJ et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49:1304–1313.

    CAS  PubMed  Google Scholar 

  3. Toborek M, Wasik T, Drózdz M et al. Effect of hemodialysis on lipid peroxidation and antioxidant system in patients with chronic renal failure. Metabolism 1992; 41:1229–1232.

    Article  CAS  PubMed  Google Scholar 

  4. Epperlein MM, Nourooz-Zadeh J, Jayasena SD et al. Nature and biological significance of free radicals generated during bicarbonate hemodialysis. J Am Soc Nephrol 1998; 9:457–463.

    CAS  PubMed  Google Scholar 

  5. Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 1993; 23(Suppl 1):118–126.

    CAS  PubMed  Google Scholar 

  6. Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species—Reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000; 20:1716–1723.

    CAS  PubMed  Google Scholar 

  7. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase—Role in cardiovascular biology and disease. Circ Res 2000; 86:494–501.

    CAS  PubMed  Google Scholar 

  8. Vásquez-Vivar J, Kalyanaraman B. Generation of superoxide from nitric oxide synthase. FEBS Lett 2000; 481:305–306.

    Article  PubMed  Google Scholar 

  9. Böger RH, Böde-Boger SM, Phivthong-ngam L et al. Dietary L-arginine and α-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms. Atherosclerosis 1998; 141:31–43.

    Article  PubMed  Google Scholar 

  10. Heitzer T, Brockhoff C, Mayer B et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers—Evidence for a dysfunctional nitric oxide synthase. Circ Res 2000; 86:E36–E41.

    CAS  PubMed  Google Scholar 

  11. Klahr S, Morrissey JJ. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int Suppl 2000; 75:S7–14.

    Article  CAS  PubMed  Google Scholar 

  12. Modi KS, Morrissey J, Shah SV et al. Effects of probucol on renal function in rats with bilateral ureteral obstruction. Kidney Int 1990; 38:843–850.

    CAS  PubMed  Google Scholar 

  13. Hannken T, Schroeder R, Zahner G et al. Reactive oxygen species stimulate p44/42 mitogen-activated protein kinase and induce p27Kip1: Role in angiotensin II-mediated hypertrophy of proximal tubular cells. J Am Soc Nephrol 2000; 11:1387–1397.

    CAS  PubMed  Google Scholar 

  14. Hannken T, Schroeder R, Stahl RAK et al. Angiotensin II-mediated expression of p27Kip1 induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int 1998; 54:1923–1933.

    Article  CAS  PubMed  Google Scholar 

  15. Klahr S. Oxygen radicals and renal diseases. Miner Electrolyte Metab 1997; 23:140–143.

    CAS  PubMed  Google Scholar 

  16. Scheuer H, Gwinner W, Hohbach J et al. Oxidant stress in hyperlipidemia-induced renal damage. Am J Physiol Renal Physiol 2000; 278:F63–F74.

    CAS  PubMed  Google Scholar 

  17. Kawada N, Moriyama T, Ando A et al. Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction. Kidney Int 1999; 56:1004–1013.

    Article  CAS  PubMed  Google Scholar 

  18. Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic Res 1999; 31:261–272.

    Article  CAS  PubMed  Google Scholar 

  19. Galle J. Oxidative stress in chronic renal failure. Nephrol Dial Transplant 2001; 16:2135–2137.

    Article  CAS  PubMed  Google Scholar 

  20. Iglesias-De La Cruz MC, Ruiz-Torres P, Alcami J et al. Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells. Kidney Int 2001; 59:87–95.

    Article  CAS  PubMed  Google Scholar 

  21. Lal MA, Brismar H, Eklof AC et al. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int 2002; 61:2006–2014.

    Article  CAS  PubMed  Google Scholar 

  22. Thannickal VJ, Day RM, Klinz SG et al. Ras-dependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 2000; 14:1741–1748.

    Article  CAS  PubMed  Google Scholar 

  23. Park SK, Kim J, Seomun Y et al. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun 2001; 284:966–971.

    Article  CAS  PubMed  Google Scholar 

  24. Moriyama T, Kawada N, Nagatoya K et al. Oxidative stress in tubulointerstitial injury: Therapeutic potential of antioxidants towards interstitial fibrosis. Nephrol Dial Transplant 2000; 15Suppl 6:47–49.

    Article  CAS  PubMed  Google Scholar 

  25. Kliem V, Johnson RJ, Alpers CE et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int 1996; 49:666–678.

    CAS  PubMed  Google Scholar 

  26. Heermeier K, Heinloth A, Galle J. OxLDL modulates the cell cycle via oxidative stress. In: Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y, eds. Free Radicals in Chemistry, Biology and Medicine. London: OICA International, 2001:299–304.

    Google Scholar 

  27. Griendling KK, Minieri CA, Ollerenshaw JD et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74:1141–1148.

    CAS  PubMed  Google Scholar 

  28. Pagano PJ, Clark JK, Cifuentes Pagano ME et al. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: Enhancement by angiotensin II. Proc Natl Acad Sci USA 1997; 94:14483–14488.

    Article  CAS  PubMed  Google Scholar 

  29. Jaimes EA, Galceran JM, Raij L. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int 1998; 54:775–784.

    Article  CAS  PubMed  Google Scholar 

  30. Yanagitani Y, Rakugi H, Okamura A et al. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension 1999; 33:335–339.

    CAS  PubMed  Google Scholar 

  31. Morawietz H, Rueckschloss U, Niemann B et al. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low density lipoprotein. Circulation 1999; 100:899–902.

    CAS  PubMed  Google Scholar 

  32. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91:2546–2551.

    CAS  PubMed  Google Scholar 

  33. Mügge A, Brandes RP, Böger RH et al. Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits. J Cardivasc Pharmacol 1994; 24:994–998.

    Article  Google Scholar 

  34. Galle J, Heinloth A, Schwedler S et al. Effect of HDL and atherogenic lipoproteins on formation of O2 and renin release in juxtaglomerular cells. Kidney Int 1997; 51:253–260.

    CAS  PubMed  Google Scholar 

  35. Galle J, Schneider R, Heinloth A et al. Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: Role of oxidative stress. Kidney Int 1999; 55:1450–1461.

    Article  CAS  PubMed  Google Scholar 

  36. Galle J, Schneider R, Winner B et al. Glyc-oxidized LDL impair endothelial function more potently than oxidized LDL: Role of enhanced oxidative stress. Atherosclerosis 1998; 138:65–77.

    Article  CAS  PubMed  Google Scholar 

  37. Galle J, Bengen J, Schollmeyer P et al. Impairment of endothelium-dependent dilation by oxidized lipoprotein(a): Role of oxygen-derived radicals. J Am Soc Nephrol 1994; 5:578.

    Google Scholar 

  38. Hansen PR, Kharazmi AK, Jauhiainen M et al. Induction of free radical generation in human monocytes by lipoprotein(a). Eur J Clin Invest 1994; 24:497–499.

    CAS  Google Scholar 

  39. Sharma P, Reddy K, Franki N et al. Native and oxidized low density lipoproteins modulate mesangial cell apoptosis. Kidney Int 1996; 50:1604–1611.

    CAS  PubMed  Google Scholar 

  40. Parthasarathy S, Steinbrecher U, Barnett J et al. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci USA 1985; 82:3000–3004.

    Article  CAS  PubMed  Google Scholar 

  41. Yokoyama M, Hirata K, Miyake R et al. Lysophosphatidylcholine: Essential role in the inhibition of endothelium-dependent vasorelaxation by oxidized low density lipoprotein. Biochem Biophys Res Commun 1990; 168:301–308.

    Article  CAS  PubMed  Google Scholar 

  42. Esterbauer H, Jürgens G, Quehenberger O et al. Autoxidation of human low density lipoprotein: Loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987; 28:495–509.

    CAS  PubMed  Google Scholar 

  43. Kugiyama K, Sugiyama S, Ogata N et al. Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine. Atherosclerosis 1999; 143:201–204.

    Article  CAS  PubMed  Google Scholar 

  44. Ohara Y, Peterson TE, Zheng B et al. Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation. Arterioscler Thromb 1994; 14:1007–1013.

    CAS  PubMed  Google Scholar 

  45. Cominacini L, Rigoni A, Pasini AF et al. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem 2001; 276:13750–13755.

    CAS  PubMed  Google Scholar 

  46. Heinloth A, Heermeier K, Raff U et al. Stimulation of NADPH Oxidase by oxidized LDL induces proliferation of human vascular endothelial cells. J Am Soc Nephrol 2000; 11:1819–1825.

    CAS  PubMed  Google Scholar 

  47. Rueckschloss U, Galle J, Holtz J et al. Induction of NAD(P)H Oxidase by Oxidized Low-Density Lipoprotein in Human Endothelial Cells: Antiatherosclerotic Potential of HMG-CoA Reductase Inhibitor Therapy. Circulation 2001; 104:1767–1772.

    CAS  PubMed  Google Scholar 

  48. Ding GH, Van Goor H, Ricardo SD et al. Oxidized LDL stimulates the expression of TGF-β and fibronectin in human glomerular epithelial cells. Kidney Int 1997; 51(1):147–154.

    CAS  PubMed  Google Scholar 

  49. Ong AC, Moorhead JF. Tubular lipidosis: Epiphenomenon or pathogenetic lesion in human renal disease? Kidney Int 1994; 45:753–762.

    CAS  PubMed  Google Scholar 

  50. Poirier B, Lannaud-Bournoville M, Conti M et al. Oxidative stress occurs in absence of hyperglycaemia and inflammation in the onset of kidney lesions in normotensive obese rats. Nephrol Dial Transplant 2000; 15:467–476.

    Article  CAS  PubMed  Google Scholar 

  51. Yusuf S, Dagenais G, Pogue J et al. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342:154–160.

    Article  CAS  PubMed  Google Scholar 

  52. Stephens NG, Parsons A, Schofield PM et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS) [see comments]. Lancet 1996; 347:781–786.

    Article  CAS  PubMed  Google Scholar 

  53. GISSI. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 1999; 354:447–455.

    Article  Google Scholar 

  54. Kushi LH, Folsom AR, Prineas RJ et al. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 1996; 334:1156–1162.

    Article  CAS  PubMed  Google Scholar 

  55. Mune M, Yukawa S, Kishino M et al. Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients. Kidney Int Suppl 1999; 71:S126–S129.

    Article  CAS  PubMed  Google Scholar 

  56. Boaz M, Smetana S, Weinstein T et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): Randomised placebo-controlled trial. Lancet 2000; 356:1213–1218.

    Article  CAS  PubMed  Google Scholar 

  57. Irani K. Oxidant signaling in vascular cell growth, death, and survival-A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 2000; 87:179–183.

    CAS  PubMed  Google Scholar 

  58. Harris RC, Cheng HF. The intrarenal renin-angiotensin system: A paracrine system for the local control of renal function separate from the systemic axis. Exp Nephrol 1996; 4(Suppl 1):2–7.

    CAS  PubMed  Google Scholar 

  59. Morgan BJ, Lyson T, Scherrer U et al. Cyclosporine causes sympathetically mediated elevations in arterial pressure in rats. Hypertension 1991; 18:458–466.

    CAS  PubMed  Google Scholar 

  60. Ziai F, Ots M, Provoost AP et al. The angiotensin receptor antagonist, irbesartan, reduces renal injury in experimental chronic renal failure. Kidney Int Suppl 1996; 57:S132–S136.

    CAS  PubMed  Google Scholar 

  61. Pupilli C, Lasagni L, Romagnani P et al. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J Am Soc Nephrol 1999; 10:245–255.

    Article  CAS  PubMed  Google Scholar 

  62. Wolf G, Ziyadeh FN. The role of angiotensin II in diabetic nephropathy: Emphasis on nonhemodynamic mechanisms. Am J Kidney Dis 1997; 29:153–163.

    CAS  PubMed  Google Scholar 

  63. Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 1997; 94:3771–3776.

    Article  CAS  PubMed  Google Scholar 

  64. Wolf G. Angiotensin II: A pivotal factor in the progression of renal diseases. Nephrol Dial Transplant 1999; 14(Suppl 1):42–44.

    Article  CAS  PubMed  Google Scholar 

  65. Kihara M, Yabana M, Toya Y et al. Angiotensin II inhibits interleukin-1β-induced nitric oxide production in cultured rat mesangial cells. Kidney Int 1999; 55:1277–1283.

    Article  CAS  PubMed  Google Scholar 

  66. Rabelink TJ, Bakris GL. The renin-angiotensin system in diabetic nephropathy: The endothelial connection. Miner Electrolyte Metab 1998; 24:381–388.

    Article  CAS  PubMed  Google Scholar 

  67. Wolf G, Mueller E, Stahl RA et al. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells in mediated by endogenous transforming growth factor-beta. J Clin Invest 1993; 92:1366–1372.

    CAS  PubMed  Google Scholar 

  68. Rajagopalan S, Kurz S, Munzel T et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97:1916–1923.

    CAS  PubMed  Google Scholar 

  69. Radeke HH, Resch K. The inflammatory function of renal glomerular mesangial cells and their interaction with the cellular immune system. Clin Invest 1992; 70:825–842.

    Article  CAS  Google Scholar 

  70. Wolf G, Ziyadeh FN, Thaiss F et al. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest 1997; 100:1047–1058.

    CAS  PubMed  Google Scholar 

  71. Wolf G, Neilson EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 1990; 259(5 Pt 2):F768–F777.

    CAS  PubMed  Google Scholar 

  72. Wolf G, Ziyadeh FN, Zahner G et al. Angiotensin II is mitogenic for cultured rat glomerular endothelial cells. Hypertension 1996; 27:897–905.

    CAS  PubMed  Google Scholar 

  73. Kagami S, Border WA, Miller DE et al. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 1994; 93:2431–2437.

    Article  CAS  PubMed  Google Scholar 

  74. Singh R, Alavi N, Singh AK et al. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes 1999; 48:2066–2073.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Galle, J., Quaschning, T., Seibold, S. (2005). Oxidative Stress, Lipoproteins and Angiotensin II. In: Fibrogenesis: Cellular and Molecular Basis. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26476-0_3

Download citation

Publish with us

Policies and ethics