Skip to main content

Pathological Significance of Renal Expression of Proinflammatory Molecules

  • Chapter
Fibrogenesis: Cellular and Molecular Basis

Abstract

Recent studies of cytokines, chemokines, adhesion molecules and growth factors have enhanced our understanding of molecular mechanisms of leukocyte trafficking and their activation in the inflammatory phase of various renal diseases. Interactions between infiltrated inflammatory cells and resident renal cells are actively involved in the pathogenesis of phase-specific renal disorders. Furthermore, a number of proinflammatory and fibrogenic cytokines, chemokines and growth factors exert their biological activities through their receptors expressed on resident renal cells, to induce inflammatory responses that eventually lead to the development of fibrosis in various renal diseases. Thus, measuring the levels of certain proinflammatory molecules might provide useful information about the inflammatory state of the diseased kidney and could have clinical importance and significance. The selective intervention of some of these molecules might have the therapeutic potential to modulate renal inflammatory responses, and thereby could alter disease progression. Despite the apparent redundancy, accumulating evidence supports this possibility. In this chapter, we will briefly summarize the specific roles of certain proinflammatory molecules in the pathogenesis of various human and experimental renal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones DB. Glomerulonephritis. Am J Pathol 1953; 29:33–43.

    CAS  PubMed  Google Scholar 

  2. Wada T, Yokoyama H, Matsushima K et al. Chemokines in renal diseases. Int Immunopharmacol 2001; 1:637–645.

    Article  CAS  PubMed  Google Scholar 

  3. Wolpe SD, Davatelis G, Sherry B et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemotactic properties. J Exp Med 1988;167:570–580.

    Article  CAS  PubMed  Google Scholar 

  4. van Rooijen N, Sanders A. Elimination, blocking, and activation of macrophages: Three of a kind? J Leukoc Biol 1997; 62:702–709.

    PubMed  Google Scholar 

  5. Wang JM, Griffin JD, Rambaldi A et al. Induction of monocyte migration by recombinant macrophage colony stimulating factor. J Immunol 1988; 141:575–579.

    CAS  PubMed  Google Scholar 

  6. Lan HY, Nikolic-Paterson DJ, Mu W et al. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int 1995; 48:753–760.

    CAS  PubMed  Google Scholar 

  7. Matsuda M, Shikata K, Makino H et al. Glomerular expression of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in patients with various forms of glomerulonephritis. Lab Invest 1996; 75:403–412.

    CAS  PubMed  Google Scholar 

  8. Razzaque MS, Foster CS, Ahmed AR. Role of enhanced expression of m-CSF in conjunctiva affected by cicatricial pemphigoid. Invest Ophthalmol Vis Sci 2002; 43:2977–2983.

    PubMed  Google Scholar 

  9. Lan HY, Yang N, Nikolic-Paterson DJ et al. Expression of macrophage migration inhibitory factor in human glomerulonephritis. Kidney Int 2000; 57:499–509.

    Article  CAS  PubMed  Google Scholar 

  10. Yang N, Nikolic-Paterson DJ, Ng YY et al. Reversal of established rat crescentic glomerulonephritis by blockade of macrophage migration inhibitory factor (MIF): Potential role of MIF in regulating glucocorticoid production. Mol Med 1998; 4:413–24.

    CAS  PubMed  Google Scholar 

  11. Wada T, Schwarting A, Chesnutt MS et al. Nephritogenic cytokines and disease in MRL-Faslpr kidneys are dependent on multiple T cell subsets. Kidney Int 2001; 59:565–578.

    Article  CAS  PubMed  Google Scholar 

  12. Ohashi R, Shimizu A, Masuda Y et al. Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol 2002; 13:1795–805.

    Article  PubMed  Google Scholar 

  13. Imasawa T, Utsunomiya Y, Kawamura T et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 2001; 12:1401–1409.

    CAS  PubMed  Google Scholar 

  14. Ito T, Suzuki A, Imai E et al. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 2001; 12:2625–2635.

    CAS  PubMed  Google Scholar 

  15. Zlotnik A, Yoshie O. Chemokines: A new classification system and their role in immunity. Immunity 2000; 12:121–127.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy PM, Baggiolini M, Charo IF et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52:145–176.

    CAS  PubMed  Google Scholar 

  17. Romagnani P, Lazzeri E, Lasagni L et al. IP-10 and Mig production by glomerular cells in human proliferative glomerulonephritis and regulation by nitric oxide. J Am Soc Nephrol 2002; 13:53–64.

    Article  CAS  PubMed  Google Scholar 

  18. Banas B, Wornle M, Berger T et al. Roles of SLC/CCL21 and CCR7 in human kidney for mesangial proliferation, migration, apoptosis, and tissue homeostasis. J Immunol 2002; 168:4301–4307.

    CAS  PubMed  Google Scholar 

  19. Wada T, Tomosugi N, Naito T et al. Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. J Exp Med 1994; 180:1135–1140.

    Article  CAS  PubMed  Google Scholar 

  20. Wada T, Yokoyama H, Furuichi K et al. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J 1996; 10:1418–1425.

    CAS  PubMed  Google Scholar 

  21. Garin EH, Blanchard DK, Matsushima K et al. IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int 1994; 45:1311–1317.

    CAS  PubMed  Google Scholar 

  22. Huber TB, Reinhardt HC, Exner M et al. Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 2002; 168:6244–6252.

    CAS  PubMed  Google Scholar 

  23. Furuichi K, Wada T, Sakai N et al. Distinct expression of CCR1 and CCR5 in glomerular and interstitial lesions of human glomerular diseases. Am J Nephrol 2000; 20:291–299.

    Article  CAS  PubMed  Google Scholar 

  24. Moore KJ, Wada T, Barbee SD et al. Gene transfer of RANTES elicits autoimmune renal injury in MRL-Fas(lpr) mice. Kidney Int 1998; 53:1631–1641.

    Article  CAS  PubMed  Google Scholar 

  25. Parving HH, Osterby R, Anderson PW et al. Biology of renal cells in culture in The Kidney 6th edition. In: Brenner BM, ed. W.B. Saunders Company, 2000:93–191.

    Google Scholar 

  26. Holdsworth SR, Kitching AR, Tipping PG. Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int 1999; 55:1198–1216.

    Article  CAS  PubMed  Google Scholar 

  27. Thornhill MH, Kyan-Aung U, Haskard DO. IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J Immunol 1990; 144:3060–3065.

    CAS  PubMed  Google Scholar 

  28. Kaplanski G, Marin V, Montero-Julian F et al. IL-6: A regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003; 24:25–29.

    Article  CAS  PubMed  Google Scholar 

  29. Brady HR, McGinty A, Adler S. Cell-cell and cell-matrix interactions in The Kidney 6th edition. In: Brenner BM, ed. W.B. Saunders Company, 2000:192–214.

    Google Scholar 

  30. Luo Y, Lloyd C, Gutierrez-Ramos JC et al. Chemokine amplification in mesangial cells. J Immunol 1999; 163:3985–3992.

    CAS  PubMed  Google Scholar 

  31. Schneider A, Panzer U, Zahner G et al. Monocyte chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-beta. Kidney Int 1999; 56:135–144.

    Article  CAS  PubMed  Google Scholar 

  32. Wada T, Furuichi K, Sakai N et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000; 58:1492–1498.

    Article  CAS  PubMed  Google Scholar 

  33. Mezzano SA, Droguett MA, Burgos ME et al. Overexertion of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int 2000; 57:147–158.

    Article  CAS  PubMed  Google Scholar 

  34. Wolf G, Jocks T, Zahner G et al. Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury. Am J Physiol Renal Physiol 2002; 283:F1075–1084.

    PubMed  Google Scholar 

  35. Luu NT, Rainger GE, Nash GB. Differential ability of exogenous chemotactic agents to disrupt transendothelial migration of flowing neutrophils. J Immunol 2000; 164:5961–5969.

    CAS  PubMed  Google Scholar 

  36. Zernecke A, Weber KS, Erwing LP et al. Combinational model of chemokine involvement in glomerular monocyte recruitment: Role of CXC chemokine receptor 2 in infiltration dyring nephrotoxic nephritis. J Immunol 2001; 166:5755–5762.

    CAS  PubMed  Google Scholar 

  37. Furuichi K, Wada T, Iwata Y et al. Administration of FR167653, a new anti-inflammatory compound, prevents renal ischemia-reperfusion injury in mice. Nephrol Dial Transplant 2002; 17:399–407.

    Article  CAS  PubMed  Google Scholar 

  38. Poom M, Megyesi J, Green RS et al. In vivo and in vitro inhibition of JE gene expression by glucocorticoids. J Biol Chem 1991; 266:22375–22379.

    Google Scholar 

  39. Xie Y, Sakatusume M, Nishi S et al. Expression, role, receptors, and regulation of osteopontin in the kidney. Kidney Int 2001; 60:1645–1657.

    Article  CAS  PubMed  Google Scholar 

  40. Miura M, Fu X, Zhang QW et al. Neutralization of GRO alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol 2001; 159:2137–2145.

    CAS  PubMed  Google Scholar 

  41. Furuichi K, Wada T, Iwata Y et al. Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. J Am Soc Nephrol 2003; 14:1066–1071.

    Article  CAS  PubMed  Google Scholar 

  42. Pascual M, Theruvath T, Kawai T et al. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 2002; 346:580–590.

    Article  PubMed  Google Scholar 

  43. Grone HJ, Weber C, Weber KS et al. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: Blocking monocyte arrest and recruitment. FASEB J 1999; 13:1371–1383.

    CAS  PubMed  Google Scholar 

  44. Strehlau J, Pavlakis M, Lipman M et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA 1997; 94:695–700.

    Article  CAS  PubMed  Google Scholar 

  45. Nagano H, Nadeau KC, Takada M et al. Sequential cellular and molecular kinetics in acutely rejecting renal allografts in rats. Transplantation 1997; 63:1101–1108.

    Article  CAS  PubMed  Google Scholar 

  46. Robertson H, Wheeler J, Morley AR et al. Beta-chemokine expression and distribution in paraffin-embedded transplant renal biopsy sections: Analysis by scanning laser confocal microscopy. Histochem Cell Biol 1998; 110:207–213.

    Article  CAS  PubMed  Google Scholar 

  47. Azuma H, Takahara S, Matsumoto K et al. Hepatocyte growth factor prevents the development of chronic allograft nephropathy in rats. J Am Soc Nephrol 2001; 12:1280–1292.

    CAS  PubMed  Google Scholar 

  48. Song E, Zou H, Yao Y et al. Early application of Met-RANTES ameliorates chronic allograft nephropathy. Kidney Int 2002; 61:676–685.

    Article  CAS  PubMed  Google Scholar 

  49. Horuk R, Shurey S, Ng HP et al. CCR1-specific nonpeptide antagonist: Efficacy in a rabbit allograft rejection model. Immunol Lett 2001; 76:193–201.

    Article  CAS  PubMed  Google Scholar 

  50. Schuurman HJ, Menninger K, Audet M et al. Oral efficacy of the new immunomodulator FTY720 in cynomolgus monkey kidney allotransplantation, given alone or in combination with cyclosporine or RAD. Transplantation 2002; 74:951–960.

    Article  CAS  PubMed  Google Scholar 

  51. Grandaliano G, Gesualdo L, Ranieri E et al. Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation 1997; 63:414–420.

    Article  CAS  PubMed  Google Scholar 

  52. Wada T, Furuichi K, Segawa C et al. MIP-1α and MCP-1 contribute crescents and interstitial lesions in human crescentic glomerulonephritis. Kidney Int 1999; 56:995–1003.

    Article  CAS  PubMed  Google Scholar 

  53. Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 1998; 19:568–574.

    Article  CAS  PubMed  Google Scholar 

  54. Lloyd CM, Minto AW, Dorf ME et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med 1997; 185:1371–1380.

    Article  CAS  PubMed  Google Scholar 

  55. Fujinaka H, Yamamoto T, Takeya M et al. Suppression of anti-glomerular basement membrane nephritis by administration of anti-monocyte chemoattractant protein-1 antibody in WKY rats. J Am Soc Nephrol 1997; 8:1174–1178.

    CAS  PubMed  Google Scholar 

  56. Tang WW, Qi M, Warren JS. Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN. Kidney Int 1996; 50:665–671.

    CAS  PubMed  Google Scholar 

  57. Wu X, Dolecki GJ, Sherry B et al. Chemokines are expressed in a myeloid cell-dependent fashion and mediate distinct functions in immune complex glomerulonephritis in rat. J Immunol 1997; 158:3917–3924.

    CAS  PubMed  Google Scholar 

  58. Tesch GH, Schwarting A, Kinoshita K et al. Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J Clin Invest 1999; 103:73–80.

    CAS  PubMed  Google Scholar 

  59. Topham PS, Csizmadia V, Soler D et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 1999; 104:1549–1557.

    CAS  PubMed  Google Scholar 

  60. Feng L, Xia Y, Yoshimura T et al. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J Clin Invest 1995; 95:1009–1017.

    CAS  PubMed  Google Scholar 

  61. Chen S, Bacon KB, Li L et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med 1998; 188:193–198.

    Article  CAS  PubMed  Google Scholar 

  62. Herlaar E, Brown Z. p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 1999; 5:439–447.

    Article  CAS  PubMed  Google Scholar 

  63. Wada T, Furuichi K, Sakai N et al. Involvement of p38 mitogen-activated protein kinase followed by chemokine expression in crescentic glomerulonephritis. Am J Kidney Dis 2001; 38:1169–1177.

    CAS  PubMed  Google Scholar 

  64. Wada T, Furuichi K, Sakai N et al. A new anti-inflammatory compound, FR167653, ameliorates crescentic glomerulonephritis in Wistar-Kyoto rats. J Am Soc Nephrol 2000; 11:1534–1541.

    CAS  PubMed  Google Scholar 

  65. Banas B, Luckow B, Moller M et al. Chemokine and chemokine receptor expression in a novel human mesangial cell line. J Am Soc Nephrol 1999; 10:2314–2322.

    CAS  PubMed  Google Scholar 

  66. Wenzel U, Schneider A, Valente AJ et al. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney Int 1997; 51:770–776.

    CAS  PubMed  Google Scholar 

  67. Panzer U, Schneider A, Wilken J et al. The chemokine receptor antagonist AOP-RANTES reduces monocyte infiltration in experimental glomerulonephritis. Kidney Int 1999; 56:2107–2115.

    Article  CAS  PubMed  Google Scholar 

  68. Chen YM, Chien CT, Hu-Tsai MI et al. Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int 1999; 56:932–943.

    Article  CAS  PubMed  Google Scholar 

  69. Schneider A, Harendza S, Zahner G et al. Cyclooxygenase metabolites mediate glomerular monocyte chemoattractant protein-1 formation and monocyte recruitment in experimental glomerulonephritis. Kidney Int 1999; 55:430–441.

    Article  CAS  PubMed  Google Scholar 

  70. Baldwin Jr S. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol 1996; 14:649–83.

    Article  CAS  PubMed  Google Scholar 

  71. Ruiz-Ortega M, Bustos C, Hernandez-Presa MA et al. Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis. J Immunol 1998; 161:430–439.

    CAS  PubMed  Google Scholar 

  72. Inan MS, Razzaque MS, Taguchi T. Pathological significance of renal expression of NFκB. Contrib Nephrol 2003; 139:90–101.

    CAS  PubMed  Google Scholar 

  73. Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 2001; 59:415–24.

    Article  CAS  PubMed  Google Scholar 

  74. Zoja C, Liu XH, Donadelli R et al. Renal expression of monocyte chemoattractant protein-1 in lupus autoimmune mice. J Am Soc Nephrol 1997; 8:720–729.

    CAS  PubMed  Google Scholar 

  75. Tesch GH, Maifert S, Schwarting A et al. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Faslpr mice. J Exp Med 1999; 190:1813–1824.

    Article  CAS  PubMed  Google Scholar 

  76. Perez de Lema G, Maier H, Nieto E. Chemokine expression precedes inflammatory cell infiltration and chemokine receptor and cytokine expression during the initiation of murine lupus nephritis. J Am Soc Nephrol 2001; 12:1369–1382.

    CAS  PubMed  Google Scholar 

  77. Yamada M, Yagita H, Inoue H et al. Selective accumulation of CCR4+ T lymphocytes into renal tissue of patients with lupus nephritis. Arthritis Rheum 2002; 46:735–740.

    Article  PubMed  Google Scholar 

  78. Ishikawa S, Sato T, Abe M et al. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J Exp Med 2001; 193:1393–1402.

    Article  CAS  PubMed  Google Scholar 

  79. Zoja C, Corna D, Benedetti G et al. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney Int 1998; 53:726–734.

    Article  CAS  PubMed  Google Scholar 

  80. Iwata Y, Wada T, Furuichi K et al. p38 mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Faslpr mice. J Am Soc Nephrol 2003; 14:57–67.

    Article  CAS  PubMed  Google Scholar 

  81. Kato S, Luyckx VA, Ots M et al. Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats. Kidney Int 1999; 56:1037–1048.

    Article  CAS  PubMed  Google Scholar 

  82. Parving HH, Lehnert H, Brochner-Mortensen J et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345:870–878.

    Article  CAS  PubMed  Google Scholar 

  83. Brenner BM, Cooper ME, de Zeeuw D et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345:861–869.

    Article  CAS  PubMed  Google Scholar 

  84. Nakao N, Yoshimura A, Morita H et al. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in nondiabetic renal disease (COOPERATE): A randomised controlled trial. Lancet 2003; 361:117–124.

    Article  CAS  PubMed  Google Scholar 

  85. Utimura R, Fujihara CK, Mattar AL et al. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003; 63:209–216.

    Article  CAS  PubMed  Google Scholar 

  86. Morrissey JJ, Klahr S. Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis. Am J Physiol 1998; 274:F580–586.

    CAS  PubMed  Google Scholar 

  87. Nagatoya K, Moriyama T, Kawada N et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 2002; 61:1684–1695.

    Article  CAS  PubMed  Google Scholar 

  88. Anders HJ, Vielhauer V, Frink M et al. Chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 2002; 109:251–259.

    Article  CAS  PubMed  Google Scholar 

  89. Satriano JA, Hora K, Shan Z et al. Regulation of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor-1 by IFN-γ, tumor necrosis factor-α, IgG aggregates, and cAMP in mouse mesangial cells. J Immunol 1993; 150:1971–1978.

    CAS  PubMed  Google Scholar 

  90. Rangan GK, Wang Y, Tay YC et al. Inhibition of nuclear factor-kappa B activation reduces cortical tubulointerstitial injury in proteinuric rats. Kidney Int 1999; 56:118–134.

    Article  CAS  PubMed  Google Scholar 

  91. Furuichi K, Wada T, Iwata Y et al. Upregulation of fractalkine in human crescentic glomerulonephritis. Nephron 2001; 87:314–320.

    Article  CAS  PubMed  Google Scholar 

  92. Ou ZL, Nakayama K, Natori Y et al. Effective methylprednisolone dose in experimental crescentic glomerulonephritis. Am J Kidney Dis 2001; 37:411–417.

    CAS  PubMed  Google Scholar 

  93. Jocks T, Zahner G, Freudenberg J et al. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury. J Am Soc Nephrol 1996; 7:897–905.

    CAS  PubMed  Google Scholar 

  94. Wolf G, Schneider A, Helmchen U et al. AT1-receptor antagonists abolish glomerular MCP-1 expression in a model of mesangial glomerulonephritis. Exp Nephrol 1998; 6:112–120.

    Article  CAS  PubMed  Google Scholar 

  95. Park YS, Guijarro C, Kim Y et al. Lovastatin reduces glomerular macrophage influx and expression of monocyte chemoattractant protein-1 mRNA in nephrotic rats. Am J Kidney Dis 1998; 31:190–194.

    CAS  PubMed  Google Scholar 

  96. Razzaque MS, Taguchi T. The possible role of colligin/HSP47, a collagen-binding protein, in the pathogenesis of human and experimental fibrotic diseases. Histol Histopathol 1999; 14:1199–1212.

    CAS  PubMed  Google Scholar 

  97. Razzaque MS, Taguchi T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Microsc 2002; 35:68–80.

    Article  CAS  PubMed  Google Scholar 

  98. Razzaque MS, Taguchi T. Factors that influence and contribute to the regulation of fibrosis. Contrib Nephrol 2003; 139:1–11.

    Article  CAS  PubMed  Google Scholar 

  99. Wada T, Matsushima K, Yokoyama H. Chemokines as therapeutic targets for renal diseases. Curr Med Chem Anti-inflammatory & Anti-Allergy Agents 2003; 2:175–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Wada, T., Razzaque, M.S., Matsushima, K., Taguchi, T., Yokoyama, H. (2005). Pathological Significance of Renal Expression of Proinflammatory Molecules. In: Fibrogenesis: Cellular and Molecular Basis. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26476-0_2

Download citation

Publish with us

Policies and ethics