Advertisement

Microcirculation and Reperfusion Injury in Organ Transplantation

  • Giuseppe Cicco
  • P. C. Panzera
  • G. Catalano
  • V. Memeo
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 566)

Abstract

There are many interesting aspects regarding hemorheology and tissue oxygenation in organ transplantation (such as liver, kidney, heart, etc.). The ischemia-reperfusion injury syndrome is a very important problem. Much damage in organs appears to be induced by reperfusion injury syndrome. In fact, not only immunological etiopathogenesis but also biochemically-mediated microcirculation alterations can modulate the organ damage induced by ischemia-reperfusion injury during organ transplantation.

During ischemia-reperfusion injury, xanthine oxidase activity, the increase in oxygen free-radicals, and the activation of neuthrophils are all very important. Platelet activating factor (PAT) and LTB4 (promoting neuthrophils adhesiveness), activated by the xanthine oxidase-derived oxidants during reperfusion, activates the final postischemia injury. Much research is necessary in order to gain a fuller knowledge of the microcirculation conditions and oxygenation during organ transplantation.

Keywords

Nitric Oxide Organ Transplantation Reperfusion Injury Xanthine Oxidase Ischemic Precondition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Hearse, Reperfusion of ischemic myocardium, J. Mal. Cell. Cardiol. 9(8), 605–616 (1977).Google Scholar
  2. 2.
    S. N. Jerome, C. W. Smith, and R. J. Korthuis, CD-18 dependent adherence reactions play an important role in the development of the no reflow phenomenon, Am. J. Physiol. 264(2 Pt 2), H479–483 (1993).PubMedGoogle Scholar
  3. 3.
    D. A. Parks, and D. N. Granger, Contributions of ischemia and reperfusion to mucosal lesion formation, Am. J. Physiol. 250(6), G749–753 (1986).PubMedGoogle Scholar
  4. 4.
    D. L. Carden, J. K. Smith, and R. J. Karthuis, Neutrophils mediated microvascular disfunction in postichemic canine skeletal muscle: role of granulocyte adherence, Circ. Res. 66(5), 1436–1444 (1990).PubMedGoogle Scholar
  5. 5.
    M. A. Perry, and S. S. Wodhwa, Gradual reintroduction of oxygen reduces perfusion injury in cat stomach, Am. J. Physiol. 254(3), G366–372 (1988).PubMedGoogle Scholar
  6. 6.
    R. J. Korthuis, J. K. Smith, and D. L. Carden, Hypoxic reperfusion attennates post ischemic microvascular injury, Am. J. Physiol. 256(2), H315–319 (1989).PubMedGoogle Scholar
  7. 7.
    L. O. Dahlback, and O. Rais, Morphological changes in striated muscle following ischemia: immediate postischemic phase, Acta Chir. Scand. 131(6), 430–440 (1966).PubMedGoogle Scholar
  8. 8.
    J. B. Morris, U. Haglund, and G. B. Bulkey, The protection from postischemic injury by xanthine oxidase inhibition: Blockage of free radical generation or purine salvage, Gastroenterology 92, 1542 (1987).Google Scholar
  9. 9.
    G. D. Dunn, N. D. Granger, and R. J. Korthuis, Leukocyte/endothelial cell adhesion and ischemia reperfusion injury, in: Clinically Applied Microcirculation Research, edited by J. Barker, G. L. Anderson, and M. D. Menger (CRC Press Inc., Boca Raton, FL, 1995) pp. 75–96.Google Scholar
  10. 10.
    W. K. Adkins, and A. E. Taylor, Role of xanthine oxidase and neutrophils in ischemia—reperfusion injury in rabbit lung, J. Appl. Physiol. 69(6), 2012–2018 (1990).PubMedGoogle Scholar
  11. 11.
    L. A. Hernandez, M. B. Grisham, B. Twohig, K. E. Arfors, J. M. Harlan, and D. N. Granger, Role of neutrophils in ischemia/reperfusion induced microvascular injury, Am. J. Physiol. 253(3), H699–703 (1987).PubMedGoogle Scholar
  12. 12.
    M. J. Bishop, S. M. Kowalski, S. M. Guidotti, and J. M. Harlan, Antibody against neutrophils adhesion improves reperfusion and limits alveolar infiltrate following unilateral pulmonary artery occlusion, J. Surg. Res. 52(3), 199–204 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    M. J. Horgan, M. Ge, J. Gu, R. Rothlein, and A. B. Malik, Role of ICAM-1 in neutrophil mediated lung vascular injury after occlusion and reperfusion, Am. J. Physiol. 261(5), H1578–1584 (1991).PubMedGoogle Scholar
  14. 14.
    M. J. Horgan, S. D. Wright, and A. B. Malik, Antibody against leukocyte integrin (CD 18) prevents reperfusion induced lung vascular injury, Am. J. Physiol. 259(4), L315–319 (1990).PubMedGoogle Scholar
  15. 15.
    N. B. Vedder, R. K. Winn, C. L. Rice, E. Y. Chi, K. E. Arfors, and J. M. Harlan, Inhibition of leukocyte adherence by anti-CD 18 monoclonal antibody attenuates reperfusion injury in the rabbit ear, Proc. Natl. Acad. Sci. USA. 87(7), 2643–2646 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    S. N. Jerome, M. Dore, J. C. Poulson, C. W. Smith, and R. J. Korthuis, P-selectin and ICAM-1 adherence reactions: role in the genesis of postischemic no reflow, Am. J. Physiol. 266(4), H1316–1321 (1994).PubMedGoogle Scholar
  17. 17.
    E. Mori, G. J. Del Zoppo, J. D. Chambers, B. R. Copeland, and K. E. Arfors, Inhibition of polymorphonuclear no-reflow after local cerebral ischemia in baboons, Stroke 23(5), 712–718 (1992).PubMedGoogle Scholar
  18. 18.
    X. L. Ma, P. S. Tsao, and A. M. Lefer, Antibody to CD 18 extents endothelial and cardiac protective effects in myocardial ischemia and reperfusion, J. Clin. Invest. 88(4), 1237–1243 (1991).PubMedGoogle Scholar
  19. 19.
    X. L. Ma, D. J. Lefer, A. M. Lefer, and R. Rothlein, Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion, Circulation 86(3), 937–946 (1992).PubMedGoogle Scholar
  20. 20.
    A. S. Weyrich, X. Y. Ma, D. J. Lafer, K. H. Albertine, and A. M. Lefer, In vivo neutralization of P-selectin protects feline heart and endothelium in myocardical ischemia and reperfusion injury, J. Clin. Invest. 91(6), 2620–2629 (1993).PubMedGoogle Scholar
  21. 21.
    D. H. Adams, S. G. Hubscher, J. Shaw, R. Rothlein, and J. M. Neuberger, Intercellular adhesion molecule-1 on liver allografts during rejection, Lancet 2(8672), 1122–1125 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    D. H. Adams, L. F. Wang, D. Burnett, R. A. Stockley, and J. M. Neuberger, Neutrophil activation—an important cause of tissue damage during liver rejection? Transplantation 50(1), 86–91 (1990).PubMedGoogle Scholar
  23. 23.
    V. M. Elver, S. G. Elmer, M.A. Pavilack, R. F. Todd III, B. Y. Yue, and A. R. Huber, Intercellular adhesion molecule-1 in human corneal endothelium, Am. J. Pathol. 138(3), 525–536 (1991).Google Scholar
  24. 24.
    S. G. Hubscher, and D. H. Adams, ICAM-1 expression in normal liver, J. Clin. Pathol. 44(5), 438–439 (1991).PubMedGoogle Scholar
  25. 25.
    T. Omura, H. Ishikura, Y. Nakajima, J. Kiniura, K. Ito, H. Isai, T. Tomatoni, M. Miyasaka, T. Yoshiki, and J. Vehino, The expression of FA-1 ICAM-1 in liver transplantation in rats, Transpl. Proceed. 24, 1618 (1992).Google Scholar
  26. 26.
    D. D. Sedmak, and C.G. Orasz, The role of vascular endothelial cells in transplantation in rats, Transpl. Proceed. 24, 1237 (1992).Google Scholar
  27. 27.
    Y. Takei, I. Marzi, W. Gao, G. J. Gores, J. J. Lemasters, and R. G. Thruman, Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat, Transplantation, 51(5), 959–965 (1991).PubMedGoogle Scholar
  28. 28.
    H. A. Lehr, A. Gulhmann, D. Nolte, D. Keppler, and K. Messmer, Leukotrienes as mediators in ischemia reperfusion injury in a microcirculation model in the Hamster, J. Clin. Invest. 87(6), 2036–2041 (1991).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Ames III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, Cerebral ischemia II. The no reflow phenomenon, Am. J. Pathol. 52(2), 437–453 (1968).PubMedGoogle Scholar
  30. 30.
    G. W. Schmid-Schonbein, Capillary plugging by granulocytes and the no reflow phenomenon in the microcirculation, Fed. Proceed. 46(7), 2397–2401 (1987).Google Scholar
  31. 31.
    G. Cicco, Hemorheology, reperfusion injury and organ transplantation, 12 th ECCH, Sofia (Bulgaria) A. B. RTl. l, 64 (2003).Google Scholar
  32. 32.
    W. J. Quinones-Baldrich, A. Chervu, J. J. Hernandez, M. D. Colburn, and W. S. Moore, Skeletal muscle function after ischemia “no reflow” versus reperfusion injury, J. Surg. Res. 51(1), 5–12 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    P. E. Strock, and G. M. Majno, Vascular responses to experimental tourniquet ischemia, Surg. Gynecol. Obstet. 129(2), 309–318 (1969).PubMedGoogle Scholar
  34. 34.
    J. W. Harman, The significance of local vascular phenomena in the production of ischemia necrosis in skeletal muscle, Am. J. Pathol. 24(1), 625–642 (1948).PubMedGoogle Scholar
  35. 35.
    U. Bagge, B. Amundson, and C. Lauritzen, White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock, Acta Physiol. Scand. 108(2), 159–163 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Barrosa-Aranda, G. W. Schmid-Schonbein, B. W. Zweifach, and R. L. Engler, Granulocytes and no reflow phenomenon in irreversible hemorrhagic shock, Circ. Res. 63(2), 437–447 (1988).Google Scholar
  37. 37.
    R. L. Engler, G. W. Schmid-Schonbein, and R. S. Pavalec, Leucocyte capillary plugging in myocardical ischemia and reperfusion in the dog, Am. J. Pathol. 111(1), 98–111 (1983).PubMedGoogle Scholar
  38. 38.
    S. N. Jerome, T. Akimitsu, and R. J. Korthuis, Leucocyte adhesion, edema and the development of post ischemia capillary no reflow, Am. J. Physiol. 267(4), H1329–1336 (1994).PubMedGoogle Scholar
  39. 39.
    S. N. Jerome, S. N. Akimitsu, D. C. Gute, and R. J. Korthuis, Ischemic preconditioning alternates capillary no reflow induced by prolonged ischemia and reperfusion, Am. J. Physiol. 268(5 Pt 2), H2063–2067 (1995).PubMedGoogle Scholar
  40. 40.
    M. C. Mazzoni, P. Borgstrom, M. Intaglietta, and K. E. Arfors, Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock, Circ. Shock 29(1), 27–39 (1989).PubMedGoogle Scholar
  41. 41.
    M. C. Mazzoni, M. Intaglietta, E. J. Crogue Jr., and K. E. Arfors, Amiloride-sensitive Na+ pathways in capillary endothelial cell swelling during hemorrhagic shock, J. Appl. Physiol. 73(4), 1467–1473 (1992).PubMedGoogle Scholar
  42. 42.
    T. Akimitsu, S. N. Jerome, D. C. Gute, and R. J. Korthuis, Reactive oxygen species, neutrophils infiltration and postischemic microvascular dysfunction, in: Reoxygenation Injury in Skeletal Muscle, edited by G. O. Fantini (Laudis Publication, Austin, TX, 1994), pp. 32–35.Google Scholar
  43. 43.
    D. N. Granger, Role of xanthine oxidase and granulocytes in ischemia reperfusion injury, Am. J. Physiol. 255(6), H1269–1275 (1988).PubMedGoogle Scholar
  44. 44.
    A. Koo, H. Komatsu, G. Tao, M. Inoue, P. H. Guth, and N. Kaplowitz, Contribution of no reflow phenomenon to hepatic injury after ischemia-reperfusion: evidence for a role for superoxide anion, Hepatol. 15(3), 507–514 (1992).Google Scholar
  45. 45.
    F. Serracino-Inglott, and H. Habib, Hepatic ischemia reperfusion injury, Am. J. Surg. 181, 160–166 (2001).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Kurokawa, and H. Takagi, Mechanism and prevention of ischemia reperfusion injury, Transpl. Proceed. 31(4), 1775–1776 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Giuseppe Cicco
  • P. C. Panzera
  • G. Catalano
  • V. Memeo

There are no affiliations available

Personalised recommendations