Skip to main content

Past, Present, and Future of Oxygen in Cancer Research

  • Conference paper
Oxygen Transport to Tissue XXVI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

The first pathologists, oncologists, and medical physicists were aware that tumors were populated by an aberrant vasculature. The classic observations of Thomlinson and Gray in the 1950’s established that O2 diffusion distances caused tumor to grow in cords. Tumor necrosis was observed surrounding a Krogh cylinder of viable tumor. That work helped explain earlier work by Warburg, who demonstrated a predisposition for tumors to favor anaerobic respiration, and it became the basis for 5 decades of subsequent research aimed at improving tumor oxygenation at the time of radiation. The role of O2 in modifying radiation response was attributed exclusively to the reactive free radicals that can be formed when O2 is present. These radicals produce approximately three-fold more irreparable double strand breaks in DNA.

Subsequently it became clear that tumor had nutritional insufficiencies in addition to hypoxia. Ischemic regions are hypoglycemic, acidotic, have poor penetration of drugs, increased interstitial pressure, and altered immunological states. Ischemic regions can have intermittent reflow and associated redox stress. The relative impact of O2 compared to these associated phenomenon, and the degree to which hypoxia causes or follows these associated physiologic stresses, have been studied in detail. ISOTT scientists are responsible for much of the elucidation of the specific effects of O2, ADP/ATP ratios, hypoglycemia, and acidosis on tumor responses to radiation and hyperthermia. Many questions still remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Thomlinson, Changes of oxygenation in tumors in relation to irradiation, Front. Radiat. Ther. Oncol. 3, 109–112 (1968).

    Google Scholar 

  2. K. Groebe, and P. Vaupel, Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo data: Role of various mechanisms in the development of tumor hypoxia, Int. J. Radiat. Oncol. Biol. Phys. 15(3), 691–697 (1988).

    PubMed  CAS  Google Scholar 

  3. O. Warburg, Uber den Stoffwechsel der Carcinomzellen, Klin. Wschr. 4, 534–536 (1925).

    Article  CAS  Google Scholar 

  4. J. P. Freyer, K. Jarrett, S. Carpenter, and M. R. Raju, Oxygen enhancement ratio as a function of dose and cell cycle phase for radiation-resistant and sensitive CHO cells, Radiat. Res. 127, 297–307 (1991).

    PubMed  CAS  Google Scholar 

  5. E. K. Rofstad, P. DeMuth, B. M. Fenton, and R. M. Sutherland, 31P nuclear magnetic resonance spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin saturation status and tumor hypoxia, Cancer Res. 48, 5440–5446 (1988).

    PubMed  CAS  Google Scholar 

  6. P. Vaupel, C. Schaefer, and P. Okunieff, Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi, NMR Biomed. 7, 128–136 (1994).

    PubMed  CAS  Google Scholar 

  7. P. Vaupel, H. P. Fortmeyer, S. Runkel, and F. Kallinowski, Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats, Cancer Res. 47, 3496–3503 (1987).

    PubMed  CAS  Google Scholar 

  8. P. Vaupel, F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review, Cancer Res. 49, 6449–6465 (1989).

    PubMed  CAS  Google Scholar 

  9. B. A. Teicher, Hypoxia and drug resistance, Cancer Metastasis Rev. 13(2), 139–168 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. I. Lee, Y. Boucher, T. J. Demhartner, and R. K. Jain, Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline, Br. J. Cancer 69, 492–496 (1994).

    PubMed  CAS  Google Scholar 

  11. J. Biaglow, M. Dewirst, D. Leeper, R. Burd, and S. Tuttle, Factors controlling oxygen utilization, Adv. Exp. Med. Biol. 317–324 (2005).

    Google Scholar 

  12. P. Vaupel, A. Mayer, S. Briest, and M. Höckel, Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion, Adv. Exp. Med. Biol. 333–342 (2005).

    Google Scholar 

  13. P. Vaupel, P. Okunieff, and L. J. Neuringer, Blood flow, tissue oxygenation, pH distribution, and energy metabolism of murine mammary adenocarcinomas during growth, Adv. Exp. Med. Biol. 248, 835–846 (1989).

    PubMed  CAS  Google Scholar 

  14. P. Vaupel, K. Schlenger, and M. Höckel, Blood flow and tissue oxygenation of human tumors: an update, Adv. Exp. Med. Biol. 317, 139–152 (1992).

    PubMed  CAS  Google Scholar 

  15. M. Tamura, O. Hazeki, S. Nioka, B. Chance, and D. S. Smith, The simultaneous measurements of tissue oxygen concentration and energy state by near-infrared and nuclear magnetic resonance spectroscopy, Adv. Exp. Med. Biol. 222, 359–363 (1988).

    PubMed  CAS  Google Scholar 

  16. K. Erickson, R. D. Braun, D. Yu, J. Lanzen, D. Wilson, D. M. Brizel, T. W. Secomb, J. E. Biaglow, and M. W. Dewhirst, Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation, Cancer Res. 63(15), 4705–4712 (2003).

    PubMed  CAS  Google Scholar 

  17. S. Nioka, D. S. Smith, B. Chance, H. V. Subramanian, S. Butler, and M. Katzenberg, Oxidative phosphorylation system during steady-state hypoxia in the dog brain, J. Appl. Physiol. 68(6), 2527–2535 (1990).

    PubMed  CAS  Google Scholar 

  18. J. T. Erler, C. J. Cawthorne, K. J. Williams, M. Koritzinsky, B. G. Wouters, C. Wilson, C. Miller, C. Demonacos, I. J. Stratford, and C. Dive, Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor l-dependent and-independent mechanisms and contributes to drug resistance, Mol. Cell. Biol. 24(7), 2875–2889 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. B. Chance, S. Nioka, W. Warren, and G. Yurtsever, Mitochondrial NADH as the bellwether of tissue O2 delivery, Adv. Exp. Med. Biol. 17–22 (2005).

    Google Scholar 

  20. P. Okunieff, E. P. Dunphy, M. Höckel, D. J. Terris, and P. Vaupel, The role of oxygen tension distribution on the radiation response of human breast carcinoma, Adv. Exp. Med. Biol. 345, 485–492 (1994).

    PubMed  CAS  Google Scholar 

  21. P. Okunieff, M. Höckel, E. P. Dunphy, K. Schlenger, C. Knoop, and P. Vaupel, Oxygen tension distributors are sufficient to explain the local response of human breast tumors treated with radiation alone, Int. J. Radial. Oncol. Biol. Phys. 26, 631–636 (1993).

    CAS  Google Scholar 

  22. S. Istrail, G. G. Sutton, L. Florea, A. L. Halpern, C. M. Mobarry, R. Lippert, et al., Whole-genome shotgun assembly and comparison of human genome assemblies, Proc. Natl. Acad. Sci. USA, 101(7), 1916–1921 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, et al., The sequence of the human genome, Science 291(5507), 1304–1351 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. G. Taucher-Scholz, J. A. Stanton, M. Schneider, and G. Kraft, Induction of DNA breaks in SV40 by heavy ions, Adv. Space Res. 12(2–3), 73–80 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. J. T. Hwang, M. M. Greenberg, T. Fuchs, and K. S. Gates, Reaction of the hypoxia-selective antitumor agent tirapazamine with a Cl’-radical in single-stranded and double-stranded DNA: the drug and its metabolites can serve as surrogates for molecular oxygen in radical-mediated DNA damage reactions, Biochemistry 38(43), 14248–14255 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. H. Cangul, Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers, BMC Genet. 5(1), 27 (2004).

    Article  PubMed  Google Scholar 

  27. H. Swartz, and J. Dunn, The difficulties in comparing in vivo oxygen measurements: turning the problems into virtues! Adv. Exp. Med. Biol. 295–302 (2005).

    Google Scholar 

  28. D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L. Scher, and M. W. Dewhirst, Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck, Int. J. Radial. Oncol. Biol. Phys. 38, 285–289 (1997).

    Article  CAS  Google Scholar 

  29. P. Okunieff, J. de Bie, E. P. Dunphy, D. J. Terris, and M. Höckel, Oxygen distributions partly explain the radiation response of human squamous cell carcinomas, Br. J. Cancer 27, S185–S190 (1996).

    CAS  Google Scholar 

  30. R. Rampling, G. Cruickshank, A. Lewis, S. A. Fitzsimmons, and P. Workman, Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors, Int. J. Radiat. Oncol. Biol. Phys. 29, 427–431 (1994).

    PubMed  CAS  Google Scholar 

  31. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res. 56, 941–943 (1996).

    PubMed  CAS  Google Scholar 

  32. D. M. Brizel, G. L. Rosner, L. R. Prosnitz, and M. W. Dewhirst, Patterns of variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases, Int. J. Radiat. Oncol. Biol. Phys. 32, 1121–11251 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Shaffer, and P. Vaupel, Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res. 56 4509–4515 (1996).

    PubMed  Google Scholar 

  34. M. Höckel, C. Knoop, B. Vorndran, E. Baussmann, M. Mitze, P. G. Knapstein, and P. Vaupel, Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix, Radiother. Oncol. 26, 45–50 (1993).

    Article  PubMed  Google Scholar 

  35. P. Okunieff, I. Ding, P. Vaupel, and M. Höckel, Evidence for and against hypoxia as the primary cause of tumor aggressiveness, Adv. Exp. Med. Biol. 510, 69–75 (2003).

    PubMed  CAS  Google Scholar 

  36. B. M. Seddon, D. J. Honess, B. Vojnovic, G. M. Tozer, and P. Workman, Measurement of tumor oxygenation: in vivo comparison of a luminescence fiber-optic sensor and a polarographic electrode in the p22 tumor, Radiat. Res. 155(6), 837–846 (2001).

    PubMed  CAS  Google Scholar 

  37. G. Ilangovan, A. Bratasz, and P. Kuppusamy, Non-invasive measurement of tumor oxygenation using embedded microparticulate EPR spin probe, Adv. Exp. Med. Biol. 67–74 (2005).

    Google Scholar 

  38. Y. S. Sakata, O. Y. Grinberg, S. Grinberg, R. Springett, and H. M. Swartz, Simultaneous NIR-EPR spectroscopy of rat brain oxygenation, Adv. Exp. Med. Biol. 357–362 (2005).

    Google Scholar 

  39. N. Khan, H. Hou, P. Hein, R. J. Comi, J. C. Buckey, O. Grinberg, I. Salikhov, S. Y. Lu, H. Wallach, and H. M. Swartz, Black magic and EPR oximetry: from lab to clinical trials, Adv. Exp. Med. Biol. 119–126 (2005).

    Google Scholar 

  40. H. Hou, O. Y. Grinberg, S. A. Grinberg, N. Khan, J. F. Dunn, and H. M. Swartz, Cerebral PtO2 acute hypoxia, and volatile anesthetics in the rat brain, Adv. Exp. Med. Biol. 179–186 (2005).

    Google Scholar 

  41. R. D. Shonat, and A. S. Norige, Developing strategies for three-dimensional imaging of oxygen tension in the rodent retina, Adv. Exp. Med. Biol. 173–178 (2005).

    Google Scholar 

  42. G. Schears, J. Creed, T. Zaitseva, S. Schultz, D. F. Wilson, and A. Pastuszko, Cerebral oxygenation during repetitive apnea in newborn piglets, Adv. Exp. Med. Biol. 1–8 (2005).

    Google Scholar 

  43. E. Takahashi, T. Takano, A. Numata, N. Hayashi, S. Okano, O. Nakajima, Y. Nomura, and M. Sato, Genetic oxygen sensor: GFP as an indicator of intracellular oxygenation, Adv. Exp. Med. Biol. 39–44 (2005).

    Google Scholar 

  44. Y. Song, K. L. Worden, X. Jiang, D. Zhao, A. Constantinescu, H. Liu, and R. P. Mason, Tumor oxygen dynamics: comparison of 19F MR EPI and frequency domain NIR spectroscopy, Adv. Exp. Med. Biol. 530, 225–236 (2003).

    PubMed  CAS  Google Scholar 

  45. L. Bentzen, S. Keiding, M. Nordsmark, L. Falborg, S. B. Hansen, J. Keller, O. S. Nielsen, and J. Overgaard, Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours, Radiother. Oncol. 67(3), 339–344 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. J. S. Rasey, W. J. Koh, M. L. Evans, L. M. Peterson, T. K. Lewellen, M. M. Graham, and K. A. Krohn, Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients, Int. J. Radiat. Oncol. Biol. Phys. 36(2), 417–428 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. P. Okunieff, T. Tokuhiro, P. Vaupel, and L. J. Neuringer, Interaction of oxygen partial pressure and energy metabolism with the relaxation rate of inorganic phosphate: a 31P NMR study, Adv. Exp. Med. Biol. 277, 95–105 (1990).

    PubMed  CAS  Google Scholar 

  48. F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, and P. Vaupel, Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts, Cancer Res. 49(14), 3759–3764 (1989).

    PubMed  CAS  Google Scholar 

  49. P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. Short, Validation of the CAS neonatal NIRS system by monitoring VV-EMCO patients, Adv. Exp. Med. Biol. 195–202 (2005).

    Google Scholar 

  50. C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delphy, and J. S. Wyatt, Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy, Adv. Exp. Med. Biol. 263–268 (2005).

    Google Scholar 

  51. F. A. Howe, J. P. Connelly, S. P. Robinson, R. Springett, and J. R. Griffiths, The effects of tumor blood flow and oxygenation modifiers on subcutaneous tumours as determined by NIRS, Adv. Exp. Med. Biol. 75–82 (2005).

    Google Scholar 

  52. K. von Siebenthal, M. Keel, J.-C. Fauchère, V. Dietz, D. Haensse, U. Wolf, U. Helfenstein, O. Bänziger, H. U. Bucher, and M. Wolf, Variability of cerebral hemoglobin concentration in very preterm infants during the first 6 hours of life, Adv. Exp. Med. Biol. 91–98 (2005).

    Google Scholar 

  53. M. Urano, Y. Chen, J. Humm, J. A. Koutcher, P. Zanzonico, and C. Ling, Measurements of tumor tissue oxygen tension using a time-resolved luminescence-based optical oxylite probe: comparison with a paired survival assay, Radiat. Res. 158(2), 167–173 (2002).

    PubMed  CAS  Google Scholar 

  54. T. Jarm, G. Sersa, and D. Miklavcic, Oxygenation and blood flow in tumors treated with hydralazine: evaluation with a novel luminescence-based fiber-optic sensor, Technol. Health Care 10(5), 363–380 (2002).

    PubMed  Google Scholar 

  55. B. M. Fenton, S. F. Paoni, B. Grimwood, and I. Ding, Varied response of spontaneous tumors to antiangiogenic agents, Adv. Exp. Med. Biol. 59–66 (2005)

    Google Scholar 

  56. I. Ding, P. Okunieff, K. Salnikow, W. Liu, and B. Fenton, A new intrinsic hypoxia marker in esophageal cancer, Adv. Exp. Med. Biol. 540, 227–233 (2003).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Okunieff, P., Fenton, B., Chen, Y. (2005). Past, Present, and Future of Oxygen in Cancer Research. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_29

Download citation

Publish with us

Policies and ethics