Skip to main content

Variability of Cerebral Hemoglobin Concentration in Very Preterm Infants During the First 6 Hours of Life

  • Conference paper
Oxygen Transport to Tissue XXVI

Abstract

Cerebral hemoglobin concentration (cHbc), a major determinant of oxygen transport capacity in the brain, shows a considerable variability due to physiological and methodological factors. In order to determine the (relative) contribution of these factors, the cHbc variability within the first 6 hours of life was studied in 28 very preterm infants using near infrared spectrophotometry (NIRS). Mean cHbc values were 46.4 ± 14.1 µmol/1 (2.75 ± 0.84 ml/100 g). Is the variability in cHbc related to the methodology of cHbc measurements or to physiological variables? A statistical model of stepwise regression (backward selection) with 13 independent variables and with cHbc as a dependent variable showed that, from the total variability of ± 14.1 µmol/1, only 3.7 µmol/1 (26%) were of methodological origin, while the major portion, 9.3 µmol/1 (66%) were related to four physiological variables: birth weight, gestational age, blood glucose and transcutaneous carbon dioxide tension. The remaining 1.1 µmol/1 (7.8%) were unexplained.

We conclude that NIRS, which allows continuous monitoring of cerebral oxygenation and metabolism even in the first hours of postnatal life, is a valid technique to measure cHbc in very preterm infants. The major portion of the large variability of early cHbc registrations can be attributed to physiological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Hagberg, G. Hagberg, I. Olow, and L. van Wendt, The changing panorama of cerebral palsy in Sweden, VII. Prevalence and origin in the birth year period 1987–90, Acta Paediatrica 85, 954–960 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. R. Largo, D. Pfister, L. Molinari, S. Kundu, A. Lipp, and G. Duc, Significance of prenatal, perinatal and postnatal factors in the development of AGA preterm infants at five and seven years, Dev. Med. Child Neurol. 31, 440–456 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. M. Graham, M. Levene, J. Trounce, and N. Rutter, Prediction of cerebral palsy in very low birth weight infants: prognostic ultrasound study, Lancet 2(8559), 593–596 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. D. Wertheim, E. Mercuri, J. Faundez, M. Rutherford, D. Acolet, and L. Dubowitz, Prognostic value of continuous electroencephalographic recording in full term infants with hypoxic ischaemic encephalopathy, Arch. Dis. Child 71, F97–F102 (1994).

    PubMed  CAS  Google Scholar 

  5. L. Hellström-Westas, I. Rosen, and N. Svenningsen, Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants, Arch. Dis. Child 72, F32–F38 (1995).

    Google Scholar 

  6. M. Wolf, H. U. Bucher, V. Dietz, M. Keel, K. von Siebenthal, and G. Duc, How to evaluate slow oxygenation changes to estimate absolute cerebral haemoglobin concentration by Near Infrared Spectrophotometry, Adv. Exp. Med. Biol. 411, 495–501 (1996).

    Google Scholar 

  7. J. E. Brazy, Near-infrared spectroscopy, Clin. Perinatol. 18, 519–534 (1991).

    PubMed  CAS  Google Scholar 

  8. K. von Siebenthal, G. Bernert, and P. Casaer, Near-infrared spectroscopy in newborn infants, Brain Dev. 14, 135–143 (1992).

    Google Scholar 

  9. H. U. Bucher, A. D. Edwards, A. E. Lipp, and G. Duc, Comparison between near infrared spectroscopy and 133Xenon clearance for estimation of cerebral blood flow in critically ill preterm infants, Pediatr. Res. 33, 56–60 (1993).

    PubMed  CAS  Google Scholar 

  10. C. E. Elwell, A Practical Users Guide to Near Infrared Spectroscopy, (Hamamatsu Photonics, Japan, 1995).

    Google Scholar 

  11. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy, J. Appl. Physiol. 68, 1086–1091 (1990).

    PubMed  CAS  Google Scholar 

  12. S. Matcher, C. Elwell, C. Cooper, M. Cope, and D. Delpy, Performance comparison of several published tissue near-infrared spectroscopy algorithms, Anal. Biochem. 227, 54–68 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. J. S. Wyatt, M. Cope, D. T. Delpy, P. van der Zee, S. Arridge, A. D. Edwards, and E. O. Reynolds, Measurement of optical path length for cerebral near-infrared spectroscopy in newborn infants, Dev. Neurosci. 12, 140–144 (1990).

    PubMed  CAS  Google Scholar 

  14. L. Papile, J. Burstein, and H. Koffler, Incidence and evolution of subependymal and intraventricular haemorrhage: A study of infants with birth weights less than 1500 g, J. Pediatr. 92, 529–534 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. A. J. Miller, Subset Selection in Regression (2nd edition), (Chapman & Hall/CRC Press, London & New York, 2002).

    Google Scholar 

  16. N. C. Brun, and G. Greisen, Cerebrovascular responses to carbon dioxide as detected by near-infrared spectrophotometry: comparison of three different measures, Pediatr. Res. 36, 20–24 (1994).

    PubMed  CAS  Google Scholar 

  17. R. Grubb, M. Raichle, C. Higgins, and J. Eichling, Measurement of regional blood volume by emission tomography, Ann. Neurol. 4, 322–328 (1978).

    Article  PubMed  Google Scholar 

  18. F. Sakai, K. Nakazawa, Y. Tazaki, K. Ishii, H. Hino, H. Igarashi, and T. Kanda, Regional cerebral blood flow and blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography, J. Cereb. Blood Flow. Metab. 5, 207–213 (1985).

    PubMed  CAS  Google Scholar 

  19. V. Ramaekers, P. Casaer, H. Daniels, and G. Marchal, Upper limits of brain flow autoregulation in stable infants of various conceptional age, Early Human. Dev. 24, 249–258 (1990).

    Article  CAS  Google Scholar 

  20. J. S. Wyatt, D. A. Edwards, M. Cope, D. T. Delpy, D. C. McCormick, A. Potter, and E. O. Reynolds, Response of cerebral blood volume to changes in arterial carbon dioxide tension in preterm and term infants, Pediatr. Res. 29, 553–557 (1991).

    PubMed  CAS  Google Scholar 

  21. V. Dietz, M. Wolf, M. Keel, K. von Siebenthal, O. Baenziger, and H. U. Bucher, CO2 reactivity of cerebral haemoglobin concentration in healthy newborns measured by near infrared spectrophotometry, Biol. Neonate 75, 85–90 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. O. Pryds, G. Greisen, and B. Friis-Hansen, Compensatory increase of CBF in preterm infants during hypoglycaemia, Acta Paediatr. Scand. 77, 632–637 (1988).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

von Siebenthal, K. et al. (2005). Variability of Cerebral Hemoglobin Concentration in Very Preterm Infants During the First 6 Hours of Life. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_13

Download citation

Publish with us

Policies and ethics