Skip to main content

Extrasynaptic Release of Dopamine and Volume Transmission in the Retina

  • Chapter
Dendritic Neurotransmitter Release

Abstract

Retinal DA cells share with the neurons of the substantia nigra the property of releasing dopamine in absence of presynaptic active zones. As in the midbrain, the released dopamine acts on receptors at locations distant from the release sites, a modality of communication called volume or paracrine transmission. This extrasynaptic release is controlled by the electrical activity of the cell and by extrasynaptic receptors for the neurotransmitters GABA, glutamate and dopamine. Thus, in addition to the synaptic inputs onto DA cells, dopaminergic volume transmission is regulated by the integration of the passive and active properties of the DA cells surface as well as the presence of neuroactive molecules in the extracellular space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Akopian, A., and Witkovsky, P., 1996, D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors, J. Neurophysiol. 76: 1828.

    PubMed  CAS  Google Scholar 

  • Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., and Lindau, M., 1997, The exocytotic event in chromaffin cells revealed by patch amperometry, Nature 389: 509.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P., and Mintz, I. M., 1994, Pharmacology of different types of calcium channels in rat neurons, in: Handbook of Membrane Channels. Molecular and Cellular Physiology. C. Peracchia, ed., Academic Press, San Diego, CA, pp.199–210.

    Google Scholar 

  • Bjelke, B., Goldstein, M., Tinner, B., Andersson, C., Sesack, S. R., Steinbusch, H. W. M., Lew, J. Y., He, X., Watson, S., Tengroth, B., and Fuxe, K., 1996, Dopaminergic transmission in the rat retina: evidence for volume transmission, J. Chem. Neuroanat. 12: 37.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, S. A., Xin, D., and Osborne, T., 1997, Light-induced modulation of coupling between AII amacrine cells in the rabbit retina, Vis. Neurosci. 14: 565.

    PubMed  CAS  Google Scholar 

  • Boatright, J. H., Rubim, N. M., and Iuvone, P. M., 1994, Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA, Vis. Neurosci 11: 1013.

    PubMed  CAS  Google Scholar 

  • Bruns, D., and Jahn, R., 1995, Real-time measurement of transmitter release from single synaptic vesicles, Nature 377: 62.

    Article  PubMed  CAS  Google Scholar 

  • Bunin, M. A., and Wightman, R. M., 1999, Paracrine neurotransmission in the CNS: Involvement of 5-HT, Trends Neurosci. 22: 377.

    Article  PubMed  CAS  Google Scholar 

  • Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature 289: 537.

    Article  PubMed  CAS  Google Scholar 

  • Chow, R. H., von Rüden, L., and Neher, E., 1992, Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells, Nature 356: 60.

    Article  PubMed  CAS  Google Scholar 

  • Chow, R. H., Klingauf, J., Heinemann, C., Zucker, R. S., and Neher, E., 1996, Mechanisms determining the time course of secretion in neuroendocrine cells, Neuron 16: 369.

    Article  PubMed  CAS  Google Scholar 

  • Contini, M., and Raviola, E., 2003, GABAergic synapses made by a retinal dopaminergic neuron, PNAS USA 100: 1358.

    Article  PubMed  CAS  Google Scholar 

  • Critz, S. D., and Marc, R. E., 1992, Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina, Vis. Neurosci. 9: 271.

    Article  PubMed  CAS  Google Scholar 

  • Dearry, A., and Burnside, B., 1986, Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors, J. Neurochem. 46: 1006.

    Article  PubMed  CAS  Google Scholar 

  • Dearry, A., and Burnside, B., 1989, Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium, J. Neurochem. 53: 870.

    Article  PubMed  CAS  Google Scholar 

  • DeVries, S. H., and Schwartz, E. A., 1989, Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers, J. Physiol. 414: 351.

    PubMed  CAS  Google Scholar 

  • Derouiche, A., and Asan, E., 1999, The dopamine D2 receptor subfamily in rat retina: ultrastructural immunogold and in situ hybridization studies, Eur. J. Neurosci. 11: 1391.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A., and Wagner, H.-J., 1992, Localization and function of dopamine in the adult vertebrate retina, Neurochem. Int. 20: 139.

    Article  PubMed  CAS  Google Scholar 

  • Dong, C.-J., and Werblin, F. S., 1994, Dopamine modulation of GABAc receptor function in an isolated retinal neuron, J. Neurophysiol. 71: 1258.

    PubMed  CAS  Google Scholar 

  • Dubocovich, M. L., 1983, Melatonin is a potent modulator of dopamine release in the retina, Nature 306: 782.

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich, M. L., 1985, Characterization of a retinal melatonin receptor, J. Pharmacol. Exp. Ther. 234: 395.

    PubMed  CAS  Google Scholar 

  • Dubocovich, M. L., and Hensler, J. G., 1986, Modulation of [3H]-dopamine released by different frequencies of stimulation from rabbit retina, Brit. J. Pharmacol. 88: 51.

    CAS  Google Scholar 

  • Fan, S.-F., and Yazulla, S., 1999, Modulation of voltage-dependent K+ currents (IK(V)) in retinal bipolar cells by ascorbate is mediated by dopamine D1 receptors, Vis. Neurosci. 16: 923.

    Article  PubMed  CAS  Google Scholar 

  • Fan, S.-F., and Yazulla, S., 2001, Dopamine depletion with 6-OHDA enhances dopamine D1 receptor modulation of potassium currents in retinal bipolar cells, Vis. Neurosci. 18: 327.

    Article  PubMed  CAS  Google Scholar 

  • Feigenspan, A., and Bormann, J., 1994, Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase, PNAS USA 91: 10893.

    Article  PubMed  CAS  Google Scholar 

  • Feigenspan, A., Gustincich, S., Bean, B. P., and Raviola, E., 1998, Spontaneous activity of solitary dopaminergic cells of the retina, J. Neurosci. 18: 6776.

    PubMed  CAS  Google Scholar 

  • Feigenspan, A., Gustincich, S., and Raviola, E., 2000, Pharmacology of GABAA receptors of retinal dopaminergic neurons, J. Neurophysiol. 84: 1697.

    PubMed  CAS  Google Scholar 

  • Finnegan, J. M., Pihel, K., Cahill, P. S., Huang, L., Zerby, S. E., Ewing, A. G., Kennedy, R. T., and Wightman, R. M., 1996, Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells, J. Neurochem. 66: 1914.

    Article  PubMed  CAS  Google Scholar 

  • Fujieda, H., Scher, J., Hamadanizadeh, S. A., Wankiewicz, E., Pang, S. F., and Brown, G. M., 2000, Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in guinea pig retina, Vis. Neurosci. 17: 63.

    Article  PubMed  CAS  Google Scholar 

  • Galli, A., Blakely, R. D., and DeFelice, L. J., 1998, Patch-clamp and amperometric recordings from norepinephrine transporters: Channel activity and voltage-dependent uptake, PNAS USA 95: 13260.

    Article  PubMed  CAS  Google Scholar 

  • Garaschuk, O., Yaari, Y., and Konnerth, A., 1997, Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurons, J. Physiol. 502: 13.

    Article  PubMed  CAS  Google Scholar 

  • Garris, P. A., Ciolkowski, E. L., Pastore, P., and Wightman, R. M., 1994, Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain, J. Neurosci. 14: 6084.

    PubMed  CAS  Google Scholar 

  • Grace, A. A., and Bunney, B. S., 1983a, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identification and characterization, Neuroscience 10: 301.

    Article  PubMed  CAS  Google Scholar 

  • Grace, A. A., and Bunney, B. S., 1983b, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-2. Action potential generating mechanisms and morphological correlates, Neuroscience 10: 317.

    Article  PubMed  CAS  Google Scholar 

  • Gustincich, S., Feigenspan, A., Wu, D.-K., Koopman, L. J., and Raviola, E., 1997, Control of dopamine release in the retina: a transgenic approach to neural networks, Neuron 18: 723.

    Article  PubMed  CAS  Google Scholar 

  • Gustincich, S., Feigenspan, A., Sieghart, W., and Raviola, E., 1999, Composition of the GABAA receptors of retinal dopaminergic neurons, J. Neurosci. 19: 7812.

    PubMed  CAS  Google Scholar 

  • Gustincich, S., Contini, M., Gariboldi, M., Puopolo, M., Kadota, K., Bono, H., LeMieux, J., Walsh, P., Carninci, P., Hayashizaki, Y., Okazaki, Y., and Raviola, E., 2004, Gene discovery in genetically labeled single dopaminergic neurons of the retina, PNAS USA 101: 5069.

    Article  PubMed  CAS  Google Scholar 

  • Hampson, E. C. G. M., Vaney, D. I., and Weiler, R., 1992, Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina, J. Neurosci. 12: 4911.

    PubMed  CAS  Google Scholar 

  • Hare, W. A., and Owen, W. G., 1995, Similar effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander, Vis. Neurosci. 12: 443.

    PubMed  CAS  Google Scholar 

  • Hokoç J. N., and Mariani A. P., 1987, Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells, J. Neurosci. 7: 2785.

    PubMed  Google Scholar 

  • Ishita, S., Negishi, K., Teranishi, T., Shimada, Y., and Kato, S., 1988, GABAergic inhibition on dopamine cells of the fish retina: a [3H]dopamine release study with isolated fractions, J. Neurochem. 50: 1.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, E. H., Marty, A., Schulte, A., and Chow, R. H., 1998, Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices, J. Neurosci. 18: 3548.

    PubMed  CAS  Google Scholar 

  • Jensen, R. J., and Daw, N. W., 1984, Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in the rabbit retina, J. Neurosci. 4: 2972.

    PubMed  CAS  Google Scholar 

  • Jensen, R. J., and Daw, N. W., 1986, Effects of dopamine and its agonists and antagonists on the receptive field properties of ganglion cells in the rabbit retina, Neuroscience 17: 837.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, R. J., 1989, Mechanism and site of action of a dopamine D1 antagonist in the rabbit retina, Vis. Neurosci. 3: 573.

    PubMed  CAS  Google Scholar 

  • Jensen, R. J., 1991, Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina, Vis. Neurosci. 6: 43.

    PubMed  CAS  Google Scholar 

  • Kamp, C. W., and Morgan, W. W., 1981, GABA antagonists enhance dopamine turnover in the rat retina in vivo, Eur. J. Pharmacol. 69: 273.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, M., and Wagner, H. J., 1989, Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation, Vision. Res. 29: 147.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, A. G., and Dowling, J. E., 1987, Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells, Nature 325: 437.

    Article  PubMed  CAS  Google Scholar 

  • Koh, D.-S., and Hille, B., 1997, Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry, PNAS USA 94: 1506.

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho, J., and Sagar, S. M., 1995, Light-induced c-fos expression in amacrine cells in the rabbit retina, Mol. Brain Res. 29: 53.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Cuenca, N., Wang, H.-H., and Dekorver, L., 1990, The synaptic organization of the dopaminergic amacrine cell in the cat retina, J. Neurocytol. 19: 343.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., Cuenca, N., and Dekorver, L., 1991, Postembedding immunocytochemistry for GABA and glycine reveals the synaptic relationships of the dopaminergic amacrine cell of the cat retina, J. Comp. Neurol. 310: 267.

    Article  PubMed  CAS  Google Scholar 

  • Kolbinger, W., and Weiler, R., 1993, Modulation of endogenous dopamine release in the turtle retina: effects of light, calcium, and neurotransmitters, Vis. Neurosci. 10: 1035.

    PubMed  CAS  Google Scholar 

  • Kosaka, T., Kosaka, K., Hataguchi, Y., Nagatsu, I., Wu, J.-Y., Ottersen, O. P., Storm-Mathisen, J., and Hama, K., 1987, Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat, Exp. Brain Res. 66: 191.

    Article  PubMed  CAS  Google Scholar 

  • Lasater, E. M., and Dowling, J. E., 1985, Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells, PNAS USA 82: 3025.

    Article  PubMed  CAS  Google Scholar 

  • Maguire, G., and Werblin, F., 1994, Dopamine enhances a glutamate-gated ionic current in OFF bipolar cells of the tiger salamander retina, J. Neurosci. 14: 6094.

    PubMed  CAS  Google Scholar 

  • Mills, S. L., and Massey, S. C., 1995, Differential properties of two gap junctional pathways made by AII amacrine cells, Nature 377: 734.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, W. W., and Kamp, C. W., 1980, A GABAergic influence on the light-induced increase in dopamine turnover in the dark-adapted rat retina in vivo, J. Neurochem. 34: 1082.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, W. W., and Kamp, C. W., 1983, Effect of strychnine and of bicuculline on dopamine synthesis in retinas of dark-maintained rats, Brain Res. 278: 362.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Legros, J., 1988, Morphology and distribution of catecholamine-neurons in mammalian retina, Progr. Retinal Res. 7: 113.

    Article  Google Scholar 

  • O’Connor, P.M., Zucker, C. L., and Dowling, J. E., 1987, Regulation of dopamine release from interplexiform cell processes in the outer plexiform layer of the carp retina, J. Neurochem. 49: 916.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer-Linn, C. L., and Lasater, E. M., 1998, Multiple second-messenger system modulation of voltage-activated calcium currents in teleost retinal horizontal cells, J. Neurophysiol. 80: 377.

    PubMed  CAS  Google Scholar 

  • Piccolino, M., Neyton, J., and Gerschenfeld, H. M., 1984, Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3′:5′-monophosphate in horizontal cells of turtle retina, J. Neurosci. 4: 2477.

    PubMed  CAS  Google Scholar 

  • Piccolino, M., Witkovsky, P., and Trimarchi, C., 1987, Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine, J. Neurosci. 7: 2273.

    PubMed  CAS  Google Scholar 

  • Pourcho, R.G., 1982, Dopaminergic amacrine cells in the cat retina, Brain Res. 252: 101.

    Article  PubMed  CAS  Google Scholar 

  • Rice, M. E., Cragg, S. J. and Greenfield, S. A., 1997, Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro, J. Neurophysiol. 77: 853.

    PubMed  CAS  Google Scholar 

  • Sandell, J. H., and Masland, R. H., 1986, A system of indoleamine-accumulating neurons in the rabbit retina, J. Neurosci. 6: 3331.

    PubMed  CAS  Google Scholar 

  • Shulman, L. M., and Fox, D. A., 1996, Dopamine inhibits mammalian photoreceptor Na+, K+-ATPase activity via a selective effect on the α3 isozyme. PNAS USA 93: 8034.

    Article  PubMed  CAS  Google Scholar 

  • Stella, S. L., Jr., and Thoreson, W. B., 2000, Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP, Eur. J. Neurosci. 12: 3537.

    Article  PubMed  Google Scholar 

  • Strettoi, E., Raviola, E., and Dacheux, R. F., 1992, Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina, J. Comp. Neurol. 325: 152.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, N., Yokotani, K., Okuma, M., Ueno, H., and Osumi, Y., 1995, Properties of the voltage-gated calcium channels mediating dopamine and acetylcholine release from the isolated rat retina, Brain Res., 676:363.

    Article  PubMed  CAS  Google Scholar 

  • Tauchi, M., Madigan, N. K., and Masland, R. H., 1990, Shapes and distributions of the catecholamine-accumulating neurons in the rabbit retina, J. Comp. Neurol. 293: 178.

    Article  PubMed  CAS  Google Scholar 

  • Tosini, G., and Menaker, M., 1996, Circadian rhythms in cultured mammalian retina, Science 272: 419.

    Article  PubMed  CAS  Google Scholar 

  • Ureña, J., Fernández-Chacón, R., Benot, A. R., Alvarez de Toledo, G., and López-Bameo, J., 1994, Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells, PNAS USA 91: 10208.

    Article  PubMed  Google Scholar 

  • Veruki, M. L., 1997, Dopaminergic neurons in the rat retina express dopamine D2/3 receptors, Eur. J. Neurosci. 9: 1096.

    Article  PubMed  CAS  Google Scholar 

  • Veruki, M. L., and Wässle, H., 1996, Immunohistochemical localization of dopamine D1 receptors in rat retina, Eur. J. Neurosci. 8: 2286.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, T., and Wässle, H., 1987, Dopaminergic innervation of AII amacrine cells in mammalian retina. J. Neurosci. 7: 4115.

    PubMed  CAS  Google Scholar 

  • Wässle, H., and Chun, M. H., 1988, Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina, J. Neurosci. 8: 3383.

    PubMed  Google Scholar 

  • Wellis, D. P., and Werblin, F. S., 1995, Dopamine modulates GABAc receptors mediating inhibition of calcium entry into and transmitter release from bipolar cell terminals in tiger salamander retina, J. Neurosci. 15: 4748.

    PubMed  CAS  Google Scholar 

  • Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D. J., Near, J. A., Diliberto, E. J., Jr., and Viveros, O. H., 1991, Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells, PNAS USA 88: 10754.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., 2004, Dopamine and retinal function, Doc. Ophtholmol. (in press).

    Google Scholar 

  • Witkovsky, P., and Dearry, A., 1991, Functional roles of dopamine in the vertebrate retina, Progr. Retinal Res. 11:247.

    Article  CAS  Google Scholar 

  • Witkovsky, P., Nicholson, C., Rice, M. E., Bohmaker, K., and Meller, E., 1993, Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. PNAS USA 90: 5667.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., Veisenberger, E., LeSauter, J., Yan, L., Johnson, M., Zhang, D.-Q., McMahon, D., and Silver, R., 2003, Cellular location and circadian rhythm of expression of the biological clock gene Period 1 in the mouse retina, J. Neurosci. 23: 7670.

    PubMed  CAS  Google Scholar 

  • Wulle, I., and Wagner, H.-J., 1990, GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates, J. Comp. Neurol. 296: 173.

    Article  PubMed  CAS  Google Scholar 

  • Xin, D., and Bloomfield, S. A., 1999, Dark-and light-induced changes in coupling between horizontal cells in mammalian retina, J. Comp. Neurol. 405: 75.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H.P., Zhao, J.W., and Yang, X.L., 2003, Cholinergic and dopaminergic amacrine cells differentially express calcium channel subunits in the rat retina, Neuroscience, 118:763.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., and Misler, S., 1995, Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons, PNAS USA 92: 6938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Puopolo, M., Hochstetler, S.E., Gustincich, S., Wightman, R.M., Raviola, E. (2005). Extrasynaptic Release of Dopamine and Volume Transmission in the Retina. In: Ludwig, M. (eds) Dendritic Neurotransmitter Release. Springer, Boston, MA. https://doi.org/10.1007/0-387-23696-1_12

Download citation

Publish with us

Policies and ethics