Skip to main content

The CLCAs: Proteins with Ion Channel, Cell Adhesion and Tumor Suppressor Functions

  • Conference paper
Defects of Secretion in Cystic Fibrosis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 558))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Huang, J. Liu, A. Di, N. C. Robinson, M. W. Musch, M. A. Kaetzel, and D. J. Nelson. Regulation of human C1C-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J. Biol. Chem. 276, 20093–20100 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. H. Sun, T. Tsunenari, K. W. Yau, and J. Nathans. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. U. S. A. 99, 4008–4013 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. T. Tsunenari, H. Sun, J. Williams, H. Cahill, P. Smallwood, K. W. Yau, and J. Nathans. Structure-function analysis of the bestrophin family of anion channels. J. Biol. Chem. 278, 41114–41125 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Z. Qu, R. W. Wei, W. Mann and H. C. Hartzell. Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J. Biol Chem. 278, 49563–49572 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. S. Ran and D. J. Benos. Isolation and functional reconstitution of a 38-kDa chloride channel protein from bovine tracheal membranes. J. Biol. Chem. 266, 4782–4788 (1991).

    PubMed  CAS  Google Scholar 

  6. S. Rana and D. J. Benos. Immunopurification and structural analysis of a putative epithelal Cl channel protein isolated from bovine trachea. J. Biol. Chem. 267, 3618–3625 (1992).

    Google Scholar 

  7. S. Ran, C. M. Fuller, M. P. Arrate, R. Latorre and D. J. Benos. Functional reconstitution of a chloride channel protein from bovine trachea. J Biol. Chem. 267, 20630–20637 (1992).

    PubMed  CAS  Google Scholar 

  8. C. M. Fuller, I. I. Ismailov, D. Keeton, and D. J. Benos. Phosphorylation and activation of an anion channelfrom bovine trachea by Ca2+/calmodulin dependent kinase II. J. Biol. Chem. 269, 26642–26650 (1994).

    PubMed  CAS  Google Scholar 

  9. S. A. Cunningham, M. S. Awayda, J. K. Bubien, I.I. Ismailov, M. P. Arrate, B. K. Berdiev, D. J. Benos, and C. M. Fuller. Cloning of an epithelial chloride channel from bovine trachea. J. Biol. Chem. 270, 31016–31026 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. M. M. White and M. Aylwin. Niflumic and flufenamic acids are potent reversible blockers of Ca2+-activated Cl channels in Xenopus oocytes. Mol. Pharmacol. 37, 720–724 (1990).

    PubMed  CAS  Google Scholar 

  11. G. Perez, A. Lagrutta, J. P. Adelman, and L. Toro. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Biophys. J. 66, 1022–1027 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. F. Thevenod, E. Roussa, D. J. Benos, and C. M. Fuller. Relationship between a HCO3 -permeable conductance and a CLCA protein from rat pancreatic zymogen granules. Biochem. Biophys. Res. Commun. 300, 546–554 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. M. E. Loewen, N. K. Smith, D. L. Hamilton, B. H. Grahn, and G. W. Forsyth. CLCA protein and chloride transport in canine retinal pigment epithelium. Am. J. Physiol. Cell Physiol. 285, C1314–1321 (2003).

    PubMed  CAS  Google Scholar 

  14. K. J. Gaspar, K. J. Racette, J. R. Gordon, M. E. Loewen, and G. W. Forsyth. Cloning a chloride conductance mediator from the apical membrane of porcine ileal enterocytes. Physiol. Genomics 3 101–111 (2000).

    PubMed  CAS  Google Scholar 

  15. A. D. Gruber, K. D. Schreur, H.-L. Ji, C. M. Fuller, and B. U. Pauli. Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea and mammary gland. Am. J. Physiol. Cell Physiol. 276, C1261–1270 (1999).

    CAS  Google Scholar 

  16. A. D. Gruber and B. U. Pauli. Molecular cloning and biochemical characterization of a truncated, secreted member of the human family of Ca2+-activated Cl channels. Biochim. Biophys. Acta 1444, 418–423 (1999).

    PubMed  CAS  Google Scholar 

  17. C. A. Whittaker and R. O. Hynes. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. L. Romio, L. Musante, R. Cinti, M. Sen, O. Moran, O. Zegarra-Moran, and L. J. Galietta. Characterization of a murine gene homologous to the bovine CaCC chloride channel. Gene 228, 181–188 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. A. D. Gruber, C. M. Fuller, R. C. Elble, D. J. Benos, and B. U. Pauli. The CLCA gene family: a novel family of putative chloride channels. Curr. Genomics 1, 201–222 (2000).

    Article  CAS  Google Scholar 

  20. M. Hobom, S. Dai, E. Marais, L. Lacinova, F. Hofmann, and N. Klugbauer. Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur. J. Neurosci. 12, 1217–1226 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. J. Arikkath and K. P. Campbell. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. A. D. Gruber, R. C. Elble, and B.U. Pauli. Discovery and cloning of the CLCA gene family. In: Calcium-activated Chloride Channels. Edited by C.M. Fuller (Elsevier/Academic Press, San Diego, 2002), Vol. 53, pp. 367–387.

    Chapter  Google Scholar 

  23. A. D. Gruber, R. C. Elble, H.-L. Ji, K. D. Schreur, C. M. Fuller, and B. U. Pauli. Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl channel proteins. Genomics 54, 200–214 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. R. Gandhi, R. C. Elble, A. D. Gruber, K. D. Schreur, H.-L. Ji, C. M. Fuller, and B. U. Pauli. Molecular and functional characterization of a calcium-sensitive chloride channel from mouse lung. J. Biol Chem. 273, 32096–32101 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. G. S. Stewart, M. Glanville, O. Aziz, N. L. Simmons, and M. A. Gray. Regulation of an outwardly rectifying chloride conductance in renal epithelial cells by external and internal calcium. J. Membr. Biol 180, 49–64 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. R. C. Elble, G. Ji, K. Nehrke, J. DeBiasio, P. D. Kingsley, M. I. Kotlikoff, and B. U. Pauli. Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J. Biol Chem. 277, 18586–18591 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. F. C. Britton, S. Ohya, B. Horowitz, and I. A. Greenwood. Comparison of the properties of CLCA1 generated currents and I(Cl(Ca)) in murine portal vein smooth muscle cells. J. Physiol 539, 107–117 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. I. A. Greenwood, L. J. Miller, S. Ohya, and B. Horowitz. The large conductance potassium channel beta-subunit can interact with and modulate the functional properties of a calcium-activated chloride channel, CLCA1. J. Biol Chem. 277 22119–22122 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. B. K. Berdiev, J. Xia, L. A. McLean, J. M. Markert, G. Y. Gillespie, T. B. Mapstone, A. P. Naren, B. Jovov, J. K. Bubien, H. L. Ji et al. Acid-sensing ion channels in malignant gliomas. J. Biol Chem. 278, 15023–15034 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. I. I. Ismailov, C. M. Fuller, B. K. Berdiev, D. J. Benos, and K. E. Barrett. A biologic function for an “orphan” messenger: D-myo-inositol (3,4,5,6)tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc. Natl. Acad. Sci. U.S.A. 93, 10505–10509 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. M. Vajanaphanich, C. Schultz, M. T. Rudolf, M. Wasserman, P. Enyedi, A. Craxton, S. B. Shears, R. Y. Tsien, K. E. Barrett, and A. E. Traynor-Kaplan. Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371, 711–714 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. M. W. Y. Ho and S. B. Shears. Regulation of calcium-activated chloride channels by inositol 3,4,5,6-tetrakisphosphate. In: Calcium-activated Chloride Channels. Edited by C.M. Fuller (Elsevier/Academic Press, San Diego, 2002), Vol. 53, pp. 345–363.

    Chapter  Google Scholar 

  33. M. A. Carew, X. Yang, C Schultz, and S. B. Shears. myo-Inositol 3,4,5,6-tetrakisphosphate inhibits an apical calcium-activated chloride conductance in polarized monolayers of a cystic fibrosis cell line. J. Biol Chem. 275, 26906–26913 (2000).

    PubMed  CAS  Google Scholar 

  34. M. W. Ho, S. B. Shears, K. S. Bruzik, M. Duszyk, and A. S. French. Ins(3,4,5,6)P4 inhibits a receptor-mediated Ca2+-dependent Cl current in CFPAC-1 cells. Am. J. Physiol. Cell Physiol. 272, C1160–1168 (1997).

    CAS  Google Scholar 

  35. M. T. Rudolf, C. Dinkel, A. E. Traynor-Kaplan, and C. Schultz. Antagonists of myoinositol 3,4,5,6-tetrakisphosphate allow repeated epithelial chloride secretion. Bioorg. Med. Chem. 11, 3315–3329 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. H. Zhang, S. Parker, K. E. Barrett, D. J. Benos, and C. M. Fuller. Ca2+-activated Cl conductances in cultured airway epithelia. FASEB J., 15, A847 (2001).

    Article  Google Scholar 

  37. H.-L. Ji, M. D. DuVall, H. K. Patton, C. L. Satterfield, C. M. Fuller, and D. J. Benos. Functional expression of a truncated epithelial Cl channel and activation by phorbol ester. Am. J. Physiol. Cell Physiol. 274, C455–464 (1998).

    CAS  Google Scholar 

  38. M. E. Loewen, L. K. Bekar, S. E. Gabriel, W. Walz, and G. W. Forsyth. pCLCA1 becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells. Biochem. Biophys. Res. Commun. 298, 531–536 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. M. E. Loewen, L. K. Bekar, W. Walz, G. W. Forsyth, and S. E. Gabriel. pCLCA1 lacks inherent chloride channel activity in an epithelial colon carcinoma cell line. Am. J. Physiol Gastrointest. Liver Physiol. in press (2004).

    Google Scholar 

  40. M. P. Anderson and M. J. Welsh. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc. Natl. Acad. Sci. U.S.A. 88, 6003–6007 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. C. M. Fuller and D. J. Benos. Electrophysiology of the CLCA family. In: Calcium-activated Chloride Channels. Edited by C.M. Fuller (Elsevier/Academic Press, San Diego, 2002), Vol. 53, pp. 389–414.

    Chapter  Google Scholar 

  42. R. C. Elble, J. Widom, A. D. Gruber, M. Abdel-Ghany, R. Levine, A. Goodwin, H.-C. Cheng, B. U. Pauli. Cloning and characterization of lung-endothelial cell adhesion molecule-1 suggest it is an endothelial chloride channel. J. Biol. Chem. 272, 27853–27861 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. D. Z. Zhu, C. F. Cheng, and B. U. Pauli. Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 88, 9568–9572 (1991).

    Article  PubMed  CAS  Google Scholar 

  44. D. Zhu, C. F. Cheng, and B. U. Pauli. Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis. J. Clin. Invest. 89, 1718–1724 (1992).

    PubMed  CAS  Google Scholar 

  45. M. Abdel-Ghany, H.-C. Cheng, R. C. Elble, and B. U. Pauli. The breast cancer β4 integrin and endothelial human CLCA2 mediate lung metatasis. J. Biol. Chem. 276, 25438–25446 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. M. Abdel-Ghany, H. C. Cheng, R. C. Elble, and B. U. Pauli. Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J. Biol. Chem. 277, 34391–34400 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. M. Abdel-Ghany, H. C. Cheng, R. C. Elble, H. Lin, J. DiBiasio, and B. U. Pauli. The Interacting Binding Domains of the ta4 Integrin and Calcium-activated Chloride Channels (CLCAs) in Metastasis. J. Biol. Chem. 278, 49406–49416 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. A. D. Gruber and B. U. Pauli. Tumorigenicity of human breast cancer is assocaited with loss of the Ca2+-activated chloride channel CLCA2. Cancer Res. 59, 5488–5491 (1999).

    PubMed  CAS  Google Scholar 

  49. R. C. Elble and B. U. Pauli. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J. Biol. Chem. 276, 40510–40517 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. S. A. Bustin, S. R. Li, and S. Dorudi. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol. 20, 331–338 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. P. M. Quinton and J. Bijman. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl. J Med. 308, 1185–1189 (1983).

    Article  PubMed  CAS  Google Scholar 

  52. P. M. Quinton. Chloride impermeability in cystic fibrosis. Nature 301, 421–422 (1983).

    Article  PubMed  CAS  Google Scholar 

  53. J. R. Riordan, J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J. L. Chou et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  PubMed  CAS  Google Scholar 

  54. K. Ho. The ROMK-cystic fibrosis transmembrane conductance regulator connection: new insights into the relationship between ROMK and cystic fibrosis transmembrane conductance regulator channels. Curr. Opiri. Nephrol. Hypertens. 7, 49–58 (1998).

    Article  CAS  Google Scholar 

  55. I. I. Ismailov, M. S. Awayda, B. J. Jovov, B. K. Berdiev, C. M. Fuller, J. R Dedman, and D. J. Benos. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 271, 4725–4732 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. K. Kunzelmann. ENaC is inhibited by an increase in the intracellular Cl(−) concentration mediated through activation of Cl(−) channels. Pflug. Arch.-Eur. J. Physiol. 445, 504–512 (2003).

    CAS  Google Scholar 

  57. M. J. Stutts, C. M. Canessa, J. C. Olsen, M. Hamrick, J. A. Conn, B. C. Rossier, and R. C. Boucher. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. T. Chinet, L. Fouassier, N. Dray-Charier, M. Imam-Ghali, H. Morel, M. Mergey, B. Dousset, R. Pare, A. Paul, and C. Housset. Regulation of electrogenic anion secretion in normal and cystic fibrosis gallbladder mucosa. Hepatol. 29, 5–13 (1999).

    Article  CAS  Google Scholar 

  59. L. G. Johnson, S. E. Boyles, J. Wilson, and R. C. Boucher. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells. J. Clin. Invest. 95, 1377–1382 (1995).

    PubMed  CAS  Google Scholar 

  60. R. Tarran, M. E. Loewen, A. M. Paradiso, J. C. Olsen, M. A. Gray, B. E. Argent, R. C. Boucher, and S. E. Gabriel. Regulation of murine airway surface liquid volume by CFTR and Ca2+-activated Cl conductances. J. Gen. Physiol. 120, 407–418 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. L. L. Clarke, B. R. Grubb, S. E. Gabriel, O. Smithies, B. H. Koller, and R. C. Boucher. Defective epithelial chloride transport in a gene targeted mouse model of cystic fibrosis. Science 257, 1125–1128 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. B. R. Grubb, R. N. Vick, and R. C. Boucher. Hyperabsorption of Na+ and raised Ca2+-mediated Cl secretion in nasal epithelia of CF mice. Am. J. Physiol. Cell Physiol. 266, C1478–1483 (1994).

    CAS  Google Scholar 

  63. B. R. Grubb and R. C. Boucher. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol. Rev. 79, S193–214 (1999).

    PubMed  CAS  Google Scholar 

  64. C. K. Haston, C. McKerlie, S. Newbigging, M. Corey, R. Rozmahel, and L. C. Tsui: Detection of modifier loci influencing the lung phenotype of cystic fibrosis knockout mice. Mamm. Genome 13, 605–613 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. R. Rozmahel, M. Wilschanski, A. Matin, S. Plyte, M. Oliver, W. Auerbach, A. Moore, J. Forstner, P. Durie, J. Nadeau et al. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature Genet. 12, 280–287 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. G. Kent, R. Iles, C. E. Bear, L.-J. Huan, U. Griesenbach, C. McKerlie, H. Frndova, C. Ackerley, D. Gosselin, D. Radzioch et al. Lung disease in mice with cystic fibrosis. J. Clin. Invest. 100, 3060–3069 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. C. Chung, I. Fang, V. Nguyen, C. KLuk, G. Kent, and R. Rozmahel. Investigation of mCLCA3 as a modifier of CF disease in mice. Ped. Pulm. 22Suppl., 217 (2001).

    Google Scholar 

  68. P. Fong, B. E. Argent, W. B. Guggino, and M. A. Gray. Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. Am. J. Physiol Cell Physiol. 285, C433–445 (2003).

    PubMed  CAS  Google Scholar 

  69. J. Papassotiriou, J. Eggermont, G. Droogmans, and B. Nilius. Ca2+-activated Cl channels in Ehrlich ascites tumor cells are distinct from mCLCAl, 2 and 3. Pflug. Arch.-Eur. J. Physiol. 442, 273–279 (2001).

    Article  CAS  Google Scholar 

  70. C.M. Fuller and D.J. Benos. Ca2+-activated Cl channels: a newly emerging anion transport family. News Physiol. Sci. 15, 165–171 (2000).

    PubMed  CAS  Google Scholar 

  71. E. W. Alton, D. J. Kingsleigh-Smith, F. M. Munkonge, S. N. Smith, A. R. Lindsay, D. C. Gruenert, P. K. Jeffery, A. Norris, D. M. Geddes, and A.J. Williams. Asthma prophylaxis agents alter the function of an airway epithelial chloride channel. Am. J. Respir. Cell Mol. Biol. 14, 380–387 (1996).

    PubMed  CAS  Google Scholar 

  72. D. A. Kuperman, X. Huang, L. L. Koth, G. H. Chang, G. M. Dolganov, Z. Zhu, J. A. Elias, D. Sheppard, and D. J. Erie. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 8, 885–889 (2002).

    PubMed  CAS  Google Scholar 

  73. J. Louahed, M. Toda, J. Jen, Q. Hamid, J. C. Renauld, R. C. Levitt, and N. C. Nicolaides. Interleukin-9 upregulates mucus expression in the airways. Am. J. Respir. Cell Mol. Biol. 22, 649–656 (2000).

    PubMed  CAS  Google Scholar 

  74. P. D. Vermeer, R. Harson, L. A. Einwalter, T. Moninger, and J. Zabner. Interleukin-9 induces goblet cell hyperplasia during repair of human airway epithelia. Am. J. Respir. Cell Mol. Biol. 28, 286–295 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Y. Zhou, Q. Dong, J. Louahed, C. Dragwa, D. Savio, M. Huang, C. Weiss, Y. Tomer, M. P. McLane, N. C. Nicolaides et al. Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am. J. Respir. Cell Mol. Biol. 25, 486–491 (2001).

    PubMed  CAS  Google Scholar 

  76. Y. Zhou, M. McLane, and R. C. Levitt. Th2 cytokines and asthma. Interleukin-9 as a therapeutic target for asthma. Respir. Res. 2, 80–84 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. T. Komiya, Y. Tanigawa, and S. Hirohashi. Cloning and identification of the gene gob-5, which is expressed in intestinal goblet cells in mice. Biochem. Biophys. Res. Commun. 255, 347–351 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. A. Nakanishi, S. Morita, H. Iwashita, Y. Sagiya, Y. Ashida, H. Shirafuji, Y. Fujisawa, O. Nishimura, and M. Fujino. Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc. Natl. Acad. Sci. U.S.A. 98, 5175–5180 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. M. Toda, M. K. Tulic, R. C. Levitt, and Q. Hamid. A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J. Allergy Clin. Immunol. 109, 246–250 (2002).

    Article  PubMed  CAS  Google Scholar 

  80. M. Hoshino, S. Morita, H. Iwashita, Y. Sagiya, T. Nagi, A. Nakanishi, Y. Ashida, O. Nishimura, Y. Fujisawa, and M. Fujino. Increased expression of the human Ca2+-activated Cl channel 1 (CaCC1) gene in the asthmatic airway. Am. J. Respir. Crit. Care Med. 165, 1132–1136(2002).

    PubMed  Google Scholar 

  81. J.R. Reader, D.M. Hyde, E.S. Schelegle, M.C. Aldrich, A.M. Stoddard, M.P. McLane, R.C. Levitt, J.S. Tepper: Interleukin-9 induces mucous cell metaplasia independent of inflammation. Am. J. Respir. Cell Mol. Biol., 28,664–672 (2003).

    Article  PubMed  CAS  Google Scholar 

  82. S. J. McMillan, B. Bishop, M. J. Townsend, A. N. McKenzie, and C. M. Lloyd. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J. Exp. Med. 195, 51–57 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. H. Atherton, J. Mesher, C. T. Poll, and H. Danahay. Preliminary pharmacological characterisation of an interleukin-13-enhanced calcium-activated chloride conductance in the human airway epithelium. Naunyn Schmiedebergs Arch. Pharmacol. 367, 214–217 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. H. Danahay, H. Atherton, G. Jones, R. J. Bridges, and C. T. Poll. Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L226–236 (2002).

    PubMed  CAS  Google Scholar 

  85. F. Thevenod. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J Physiol. Cell Physiol. 283, C651–672 (2002).

    PubMed  CAS  Google Scholar 

  86. I. Leverkoehne and A. D. Gruber. The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells. J. Histochem. Cytochem. 50, 829–838 (2002).

    PubMed  CAS  Google Scholar 

  87. H. P. Hauber, J. J. Manoukian, L. H. Nguyen, S. E. Sobol, R. C. Levitt, K. J. Holroyd, N. G. McElvaney, S. Griffin, and Q. Hamid. Increased expression of interleukin-9, interleukin-9 receptor, and the calcium-activated chloride channel hCLCAl in the upper airways of patients with cystic fibrosis. Laryngoscope 113, 1037–1042 (2003).

    Article  PubMed  CAS  Google Scholar 

  88. H. Stohr, A. Marquardt, I. Nanda, M. Schmid, and B. H. Weber. Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family. Eur. J. Hum. Genet. 10, 281–284 (2002).

    Article  PubMed  Google Scholar 

  89. H. M. Berschneider, M. R. Knowles, R. G. Azizkhan, R. C. Boucher, N. A. Tobey, R. C. Orlando, and D. W. Powell. Altered intestinal chloride transport in cystic fibrosis. FASEB J. 2, 2625–2629 (1988).

    PubMed  CAS  Google Scholar 

  90. J. Hardcastle, P. T. Hardcastle, C. J. Taylor, and J. Goldhill. Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis. Gut 32, 1035–1039 (1991).

    PubMed  CAS  Google Scholar 

  91. I. Bronsveld, F. Mekus, J. Bijman, M. Ballmann, J. Greipel, J. Hundrieser, D. J. Halley, U. Laabs, R. Busche, H. R. De Jonge et al. Residual chloride secretion in intestinal tissue of deltaF508 homozygous twins and siblings with cystic fibrosis. The European CF Twin and Sibling Study Consortium. Gastroenterol. 119, 32–40 (2000).

    Article  CAS  Google Scholar 

  92. K.E. Barrett. Calcium-mediated chloride secretion in the intestinal epithelium: significance and regulation. In: Calcium-activated Chloride Channels. Edited by CM. Fuller (Elsevier/Academic Press, San Diego, 2002), Vol. 53, pp. 257–282.

    Chapter  Google Scholar 

  93. G. T. McEwan, B. H. Hirst, and N. L. Simmons. Carbachol stimulates Cl secretion via activation of two distinct apical Cl pathways in cultured human T84 intestinal epithelial monolayers. Biochim. Biophys. Acta 1220, 241–247 (1994).

    Article  PubMed  CAS  Google Scholar 

  94. D. Merlin, L. Jiang, G. R. Strohmeier, A. Nusrat, S. L. Alper, W. I. Lencer, and J. L. Madara. Distinct Ca2+-and cAMP-dependent anion conductances in the apical membrane of polarized T84 cells. Am. J. Physiol. Cell Physiol 275, C484–C495 (1998).

    CAS  Google Scholar 

  95. J. Liu, B. Schrank, and R.H. Waterston. Interaction between a putative mechanosensory membrane channel and a collagen. Science 273, 361–364 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. J. Garcia-Anoveros, J. A. Garcia, J. D. Liu, and D. P. Corey. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration-or hypercontraction-causing mutations. Neuron 20, 1231–1241 (1998).

    Article  PubMed  CAS  Google Scholar 

  97. L.L. Isom. The role of sodium channels in cell adhesion. Front. Biosci. 7, 12–23 (2002).

    Article  PubMed  Google Scholar 

  98. S. Roger, P. Besson, and J. Y. Le Guennec. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim. Biophys. Acta. 1616, 107–111(2003).

    Article  PubMed  CAS  Google Scholar 

  99. H. Sontheimer. Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci. 26, 543–549 (2003).

    Article  PubMed  CAS  Google Scholar 

  100. S. P. Yu. Regulation and critical role of potassium homeostasis in apoptosis. Prog. Neurobiol. 70, 363–386 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. M. Ritzka, C. Weinel, F. Stanke, and B. Tummler. Sequence comparison of the whole murine and human CLCA locus reveals conserved synteny between both species. Genome Lett. 2,149–154 (2003).

    Article  CAS  Google Scholar 

  102. M. Agnel, T. Vermat, and J.-M. Culouscou. Identification of three novel members of the calcium-dependent chloride channel (CaCC) family predominantly expressed in the digestive tract and trachea. FEBS Lett. 455, 295–301 (1999).

    Article  PubMed  CAS  Google Scholar 

  103. R. Itoh, S. Kawamoto, Y. Miyamoto, S. Kinoshita, and K. Okubo. Isolation and characterization of a Ca2+-activated chloride channel from human corneal epithelium. Curr. Eye Res., 21,918–925 (2000).

    Article  PubMed  CAS  Google Scholar 

  104. D. Lee, S. Ha, Y. Kho, J. Kim, K. Cho, M. Baik, and Y. Choi. Induction of mouse Ca2+-sensitive chloride channel 2 gene during involution of mammary gland. Biochem. Biophys. Res. Commun. 264, 933–937 (1999).

    Article  PubMed  CAS  Google Scholar 

  105. M. B. Yaffe, G. G. Leparc, J. Lai, T. Obata, S. Volinia, and L. C. Cantley. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol 19, 348–353 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Fuller, C.M., Kovacs, G., Anderson, S.J., Benos, D.J. (2005). The CLCAs: Proteins with Ion Channel, Cell Adhesion and Tumor Suppressor Functions. In: Schultz, C. (eds) Defects of Secretion in Cystic Fibrosis. Advances in Experimental Medicine and Biology, vol 558. Springer, Boston, MA. https://doi.org/10.1007/0-387-23250-8_7

Download citation

Publish with us

Policies and ethics