Skip to main content

Ion Channels in Secretory Granules of the Pancreas: Molecular Identification and Their Role in Regulated Secretion

  • Conference paper
Defects of Secretion in Cystic Fibrosis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 558))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Jahn, T. Lang, and T. C. Südhof, Membrane fusion, Cell 112, 519–533 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. S. Barg, C. S. Olofsson, J. Schriever-Abeln, A. Wendt, S. Gebre-Medhin, E. Renström, and P. Rorsman, Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells, Neuron 33, 287–299 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. P. Rorsman and E. Renstrom, Insulin granule dynamics in pancreatic beta cells, Diabetologia 46, 1029–1045 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. R. D. Burgoyne and M. J. Clague, Calcium and calmodulin in membrane fusion, Biochim. Biophys. Acta 1641, 137–143 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. H. Y. Gaisano, M. Ghai, P. N. Malkus, L. Sheu, A. Bouquillon, M. K. Bennett, and W. S. Trimble, Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells, Mol Biol. Cell 7, 2019–2027 (1996).

    PubMed  CAS  Google Scholar 

  6. N. J. Hansen, W. Antonin, and J. M. Edwardson, Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell, J. Biol Chem. 274, 22871–22876 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. R. Kuver, J. H. Klinkspoor, W. R. Osborne, S. P. Lee, Mucous granule exocytosis and CFTR expression in gallbladder epithelium. Glycobiology 10, 49–157 (2000).

    Article  Google Scholar 

  8. C. R. Marino, L. M. Matovcik, F. S. Gorelick, and J. A. Cohn, Localization of the cystic fibrosis transmembrane conductance regulator in pancreas, J. Clin. Invest. 88, 712–716 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. M. K. Park, R. B. Lomax, A. V. Tepikin, and O. H. Petersen, Local uncaging of caged Ca2+ reveals distribution of Ca2+-activated Cl− channels in pancreatic acinar cells, Proc. Natl. Acad. Sci. USA. 98, 10948–10953 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Maruyama, G. Inooka, Y. K. Li, Y. Miyashita, and H. Kasai, Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas, EMBO J. 12, 3017–3022 (1993).

    PubMed  CAS  Google Scholar 

  11. C. M. Fuller, L. Eckhardt, and I. Schulz, Ionic and osmotic dependence of secretion from permeabilised acini of the rat pancreas, Pflügers Arch. 413, 385–394, (1989).

    Article  PubMed  CAS  Google Scholar 

  12. F. Thévenod, Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins, Am. J. Physiol. Cell Physiol. 283, C651–C672 (2002).

    PubMed  Google Scholar 

  13. F. Thévenod, K. V. Chathadi, B. Jiang, and U. Hopfer, ATP-sensitive K+ conductance in pancreatic zymogen granules: block by glyburide and activation by diazoxide, J. Membrane Biol 129, 253–266 (1992).

    Article  Google Scholar 

  14. F. Thévenod, I. Anderie, and I. Schulz, Monoclonal antibodies against MDR1 P-glycoprotein inhibit chloride conductance and label a 65-kDa protein in pancreatic zymogen granule membranes, J. Biol. Chem. 269, 24410–24417 (1994).

    PubMed  Google Scholar 

  15. F. Thévenod, J. P. Hildebrandt, J. Striessnig, H. R. de Jonge, and I. Schulz, Chloride and potassium conductances of mouse pancreatic zymogen granules are inversely regulated by a approximately 80-kDa mdrla gene product, J. Biol. Chem. 271, 3300–3305 (1996).

    Article  PubMed  Google Scholar 

  16. M. Braun, I. Anderie, and F. Thévenod, Evidence for a 65 kDa sulfonylurea receptor in rat pancreatic zymogen granule membranes, FEBS Lett. 411, 255–259 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. M. A. Carew and P. Thorn, Identification of ClC-2-like chloride currents in pig pancreatic acinar cells, Pflügers Arch. 433, 84–90 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. F. Thévenod, E. Roussa, D. J. Benos, and C. M. Fuller, Relationship between a HCO3 −-permeable conductance and a CLCA protein from rat pancreatic zymogen granule, Biochem. Biophys. Res. Commun. 300, 546–554 (2003).

    Article  PubMed  Google Scholar 

  19. B. U. Pauli, M. Abdel-Ghany, H. C. Cheng, A. D. Gruber, H. A. Archibald, and R. C. Elble, Molecular characteristics and functional diversity of CLCA family members, Clin. Exp. Pharmacol Physiol 27, 901–905 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. C. M. Fuller, H. L. Ji, A. Tousson, R. C. Elble, B. U. Pauli, and D. J. Benos, Ca2+-activated Cl− channels: a newly emerging anion transport family, Pflügers Arch. 443(Suppl. 1), S107–S110 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. I. Leverkoehne and A. D. Gruber, The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells, J. Histochem. Cytochem. 50, 829–838 (2002).

    PubMed  CAS  Google Scholar 

  22. A. D. Gruber, R. Gandhi, and B. U. Pauli, The murine calcium-sensitive chloride channel (mCaCC) is widely expressed in secretory epithelia and in other select tissues, Histochem. Cell Biol. 110, 43–49 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. S. D. Freedman, H. F. Kern, and G. A. Scheele, Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells, Eur. J. Cell Biol. 75, 163–173 (1998).

    PubMed  CAS  Google Scholar 

  24. B. R. Grubb and R. C. Boucher, Pathophysiology of gene-targeted mouse models for cystic fibrosis, Physiol. Rev. 79(Suppl. 1), S193–S214 (1999).

    PubMed  CAS  Google Scholar 

  25. M. Suzuki, K. Fujikura, K. Kotake, N. Inagaki, S. Seino, and K. Takata, Immunolocalization of sulphonylurea receptor 1 in rat pancreas, Diabetologia 42, 1204–1211 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. J. Robbins, KCNQ potassium channels: physiology, pathophysiology, and pharmacology, Pharmacol. Ther. 90, 1–19 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. R. Warth, M. Garcia Alzamora, J. K. Kim, A. Zdebik, R. Nitschke, M. Bleich, U. Gerlach, J. Barhanin, and S. J. Kim, The role of KCNQ1/KCNE1 K+ channels in intestine and pancreas: lessons from the KCNE1 knockout mouse, Pflügers Arch. 443, 822–828 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. C. Lerche, G. Seebohm, C. I. Wagner, C. R. Scherer, L. Dehmelt, I. Abitbol, U. Gerlach, J. Brendel, B. Attali, and A.E. Busch, Molecular impact of MinK on the enantiospecific block of Iks by chromanols, Br. J. Pharmacol. 131, 1503–1506 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. B. P. Jena, S. W. Schneider, J. P. Geibel, P. Webster, H. Oberleithner, and K. C. Sritharan, Gi regulation of secretory vesicle swelling examined by atomic force microscopy, Proc. Natl. Acad. Sci. USA 94, 13317–13322 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. S. W. Schneider, K. C. Sritharan, J. P. Geibel, H. Oberleithner, and B. P. Jena, Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis, Proc. Natl Acad. Sci. USA 94, 316–321 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. S. W. Schneider, Kiss and run mechanism in exocytosis, J. Membrane Biol. 181, 67–76 (2001).

    CAS  Google Scholar 

  32. F. M. Ashcroft, and P. Rorsman, Electrophysiology of the pancreatic beta-cell, Prog. Biophys. Mol Biol 54, 87–143 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. J. Lang, Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion, Eur. J. Biochem. 259, 3–17 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. P. Rorsman, L. Eliasson, E. Renstrom, J. Gromada, S. Barg, and S. Göpel, The cell physiology of biphasic insulin secretion, News Physiol Sci. 15, 72–77 (2000).

    PubMed  CAS  Google Scholar 

  35. S. J. Ashcroft, I. Niki, S. Kenna, L. Weng, J. Skeer, B. Coles, and F. M. Ashcroft, The beta-cell sulfonylurea receptor, Adv. Exp. Med. Biol 334, 47–61 (1993).

    PubMed  CAS  Google Scholar 

  36. L. Aguilar-Bryan and J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels, Endocr. Rev. 20, 101–135 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. J. L. Carpentier, F. Sawano, M. Ravazzola, and W. J. Malaisse, Internalization of 3H-glibenclamide in pancreatic islet cells, Diabetologia 29, 259–261 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. S. E. Ozanne, P. C. Guest, J. C. Hutton, and C. N. Hales, Intracellular localization and molecular heterogeneity of the sulphonylurea receptor in insulin-secreting cells, Diabetologia 38, 277–282 (1995).

    PubMed  CAS  Google Scholar 

  39. L. Eliasson, E. Renstrom, C. Ämmäla, P. O. Berggren, A. M. Bertorello, K. Bokvist, A. Chibalin, J. T. Deeney, P. R. Flatt, J. Gabel, J. Gromada, O. Larsson, P. Lindstrom, C. J. Rhodes, and P. Rorsman, PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta-cells, Science 271, 813–815 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. S. Barg, E. Renström, P.-O. Berggren, A. Bertorello, K. Bokvist, M. Braun, L. Eliasson, W. E. Holmes, M. Köhler, P. Rorsman, and F. Thévenod, The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic □-cells is mediated by a 65 kDa mdr-like P-glycoprotein, Proc. Natl Acad. Sci. USA 96, 5539–5544 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. T. Shindo, M. Yamada, S. Isomoto, Y. Horio, and Y. Kurachi, SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil, Br. J. Pharmacol. 124, 985–991 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. S. Barg, P. Huang, L. Eliasson, D. J. Nelson, S. Obermüller, P. Rorsman, F. Thévenod, and E. Renström, Priming of insulin granules for exocytosis by granular Cl− uptake and acidification, J. Cell Sci. 114, 2145–2154 (2001).

    PubMed  CAS  Google Scholar 

  43. R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger, Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution, Nature 395, 347–353 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. R. C. De Lisle, and J. A. Williams, Zymogen granule acidity is not required for stimulated pancreatic protein secretion, Am. J. Physiol. 253, G711–G719 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Thévenod, F. (2005). Ion Channels in Secretory Granules of the Pancreas: Molecular Identification and Their Role in Regulated Secretion. In: Schultz, C. (eds) Defects of Secretion in Cystic Fibrosis. Advances in Experimental Medicine and Biology, vol 558. Springer, Boston, MA. https://doi.org/10.1007/0-387-23250-8_4

Download citation

Publish with us

Policies and ethics