Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afework, M., A. Tomlinson, and G. Burnstock (1994). Distribution and colocalization of nitric oxide synthase and NADPH-diaphorase in adrenal gland of developing, adult and aging Sprague-Dawley rats. Cell Tissue Res. 276(1), 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Ahonen, M., T.H. Joh, J.-Y. Wu, and O. Happola (1989). Immunocytochemical localization of L-glutamate decarboxylase and catecholamine-synthesizing enzymes in the retroperitoneal sympathetic tissue of the newborn rat. J. Auton. Nerv. Syst. 26(2), 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Anegawa, N.J., D.R. Lynch, T.A. Verdoorn, and D.B. Pritchett (1995). Transfection of N-methyl-D-aspartate receptors in a non-neuronal cell line leads to cell death. J. Neurochem. 64(5) 2004–2012.

    PubMed  CAS  Google Scholar 

  • Assan, R., J.R. Attali, G. Ballerio, J. Boillot, and J.R. Girard (1977). Glucagon secretion induced by natural and artificial amino acids in the perfused rat pancreas. Diabetes 26(4), 300–307.

    PubMed  CAS  Google Scholar 

  • Aunis, D. and K. Langley (1999). Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. Acta. Physiol. Scand. 167(2), 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Belloni, A.S., P.G. Andreis, V. Macchi, G. Gottardo, L.K. Malendowicz, and G.G. Nussdorfer (1998). Distribution and functional significance of angiotensin-II AT1-and AT2-receptor subtypes in the rat adrenal gland. Endrocr. Res. 24(1), 1–15.

    CAS  Google Scholar 

  • Bertrand, G., R. Gross, R. Puech, M.M. Loubatieres-Mariani, and J. Bockaert (1992). Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas. Br. J. Pharmacol. 106(2), 354–359.

    PubMed  CAS  Google Scholar 

  • Bertrand, G., R. Gross, R. Puech, M.M. Loubatieres-Mariani, and J. Bockaert (1993). Glutamate stimulates glucagon secretion via an excitatory amino acid receptor of the AMPA subtype in rat pancreas. Eur. J. Pharmacol. 237(1), 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand, G., R. Puech, M.M. Loubatieres-Mariani, and J. Bockaert (1995). Glutamate stimulates insulin secretion and improves glucose tolerance in rats. Am. J. Physiol. 269(3 Pt 1), E551–E556.

    PubMed  CAS  Google Scholar 

  • Black, M.A., R. Tremblay, G. Mealing, R. Ray, J.P. Durkin, J.F. Whitfield et al. (1995). N-Methyl-D-aspartate-or glutamate-mediated toxicity in cultured rat cortical neurons is antagonized by FPL 15896AR. J. Neurochem. 65(5), 2170–2177.

    PubMed  CAS  Google Scholar 

  • Black, M.A., R. Tremblay, G.A.R. Mealing, J.P. Durkin, J.F. Whitfield, and P. Morley (1996). The desglycinyl metabolite of remacemide hydrochloride is neuroprotective in cultured rat cortical neurons. J. Neurochem. 66(3), 989–995.

    PubMed  CAS  Google Scholar 

  • Blaschke, M., B.U. Keller, R. Rivosecchi, M. Hollmann, S. Heinemann, and A. Konnerth (1993). A single amino acid determines the subunit-specific spider toxin block of α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc. Natl. Acad. Sci. USA 90(14), 6528–6532.

    Article  PubMed  CAS  Google Scholar 

  • Boksa, P. (1990). Dopamine release from bovine adrenal medullary cells in culture. J. Auton. Nerv. Syst. 30(1), 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Brice, N.L., A. Varadi, S.J.H. Ashcroft, and E. Molnar (2002). Metabotropic glutamate and GABAB receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia 45(2), 242–252.

    Article  PubMed  CAS  Google Scholar 

  • Chenu, C., C.M. Serre, C. Raynal, B. Burt-Pichat, and P.D. Delmas (1998). Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22(4), 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1987). Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7(2), 369–379.

    PubMed  CAS  Google Scholar 

  • Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8), 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P.J. and J.-P. Pin (1997). Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237.

    Article  PubMed  CAS  Google Scholar 

  • Crumrine, R.C., G. Dubyak, and J.C. LaManna (1990). Decreased protein kinase C activity during cerebral ischemia and after reperfusion in the adult rat. J. Neurochem. 55(6), 2001–2007.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R., K. Borges, D. Bowie, and S.F. Traynelis (1999). The glutamate receptor ion channels. Pharmacol. Rev. 51(1), 7–61.

    PubMed  CAS  Google Scholar 

  • Dingledine, R. and P.J. Conn (2000). Peripheral glutamate receptors: Molecular biology and role in taste sensation. J. Nutr. 130(4S Suppl.), 1039S–1042S.

    PubMed  CAS  Google Scholar 

  • Domanska-Janik, K. and T. Zalewska (1992). Effect of brain ischemia on protein kinase C. J. Neurochem. 58(4), 1432–1439.

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky, J.M. and S.M. Rothman (1991). Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J. Neurosci. 11(8), 2545–2551.

    PubMed  CAS  Google Scholar 

  • Durkin, J.P., R. Tremblay, A. Buchan, J. Blosser, B. Chakravarthy, G. Mealing et al. (1996). An early loss in membrane protein kinase C activity precedes the excitatory amino acid-induced death of primary cortical neurons. J. Neurochem. 66(3), 951–962.

    PubMed  CAS  Google Scholar 

  • Durkin, J.P., R. Tremblay, B. Chakravarthy, G. Mealing, P. Morley, D. Small et al. (1997). Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid-induced death of primary cortical neurons. J. Neurochem. 68(4), 1400–1412.

    PubMed  CAS  Google Scholar 

  • Engeland, W.C. (1998). Functional innervation of the adrenal cortex by the splanchnic nerve. Horm. Metab. Res. 30(6–7), 311–314.

    PubMed  CAS  Google Scholar 

  • Erdo, S.L. (1991). Excitatory amino acid receptors in the mammalian periphery. Trends Pharmacol. Sci. 12(11), 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Genever, P.G., S.J. Maxfield, G.D. Kennovin, J. Maltman, C.J. Bowgen, M.J. Raxworthy et al. (1999). Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J. Invest. Dermatol. 112(3), 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S.S., R.W. Mueller, P.F. McGuire, and O.M. Pulido (2000). Potential target sites in peripheral tissues for excitatory neurotransmission and excitotoxicity. Toxicol. Pathol. 28(2), 277–284.

    PubMed  CAS  Google Scholar 

  • Gill, S.S. and O.M. Pulido (2001). Glutamate receptors in peripheral tissues: Current knowledge, future research, and implications for toxicology. Toxicol. Pathol. 29(2), 208–223.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S.S., O.M. Pulido, R.W. Mueller, and P.F. McGuire (1998). Potential target/effector sites for excitatory neurotransmission and excitotoxicity, Soc. Neurosci. 24, 341.

    Google Scholar 

  • Gill, S.S., O.M. Pulido, R.W. Mueller, and P.F. McGuire (1999). Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain Res. Bull. 48(2), 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Gonoi, T., N. Mizuno, N. Inagaki, H. Kuromi, Y. Seino, J.I. Miyazaki et al. (1994). Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J. Biol. Chem. 269(25), 16989–16992.

    PubMed  CAS  Google Scholar 

  • Gonzalez, M.P., M.T. Herrero, S. Vicente and M.J. Oset-Gasque (1998). Effect of glutamate receptor agonists on catecholamine secretion in bovine chromaffin cells. Neuroendocrinology 67(3), 181–189.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Cadavid, N.F., I. Ryndin, D. Vernet, T.R. Magee, and J. Rajer (2000). Presence of NMDA receptor subunits in the male lower urogenital tract. J. Androl. 21(4), 566–78.

    PubMed  CAS  Google Scholar 

  • Gu, Y. and S.J. Publicover (2000). Expression of functional metabotropic glutamate receptors in primary cultured rat osteoblasts. Cross-talk with N-methyl-D-aspartate receptors. J. Biol. Chem. 275(44), 34252–34259.

    Article  PubMed  CAS  Google Scholar 

  • Hama, A.T., J.B. Siegan, U. Herzberg, and J. Sagen (1999). NMDA-induced spinal hypersensitivity is reduced by naturally derived peptide analog [Ser1]histogranin. Pharmacol. Biochem. Behav. 62(1), 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Herman B. (ed.) (2002). Glutamate and Addiction. (Humana Press, New Jersey).

    Google Scholar 

  • Hinoi, E., S. Fujimori, Y. Nakamura, V. Balcar, K. Kubo, K. Ogita et al. (2002). Constitutive expression of heterologous N-methyl-D-aspartate receptor subunits in rat adrenal medulla. J. Neurosci. Res. 68(1), 36–45.

    Article  PubMed  CAS  Google Scholar 

  • Hinoi, E., K. Ogita, Y. Takeuchi, H. Ohashi, T. Maruyama, and Y. Yoneda (2001). Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem. Int. 38(3), 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Hinoi, E. and Y. Yoneda (2001). Expression of GluR6-7 subunits of kainate receptors in rat adenohypophysis. Neurochem. Int. 38(6), 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Holgert, H., K. Aman, C. Cozzari, B.K. Hartman, S. Brimijoin, P. Emson et al. (1995). The cholinergic innervation of the adrenal gland and its relation to enkephalin and nitric oxide synthase. Neuroreport 6(18), 2576–2580.

    PubMed  CAS  Google Scholar 

  • Houchi, H., M. Azuma, M. Yoshizumi, T. Tamaki, and K. Minakuchi (1999). Possible role of bradykinin on stimulussecretion coupling in adrenal chromaffin cells. J. Med. Invest. 46(1–2), 1–9.

    PubMed  CAS  Google Scholar 

  • Howell, J.A., A.D. Matthews, K.C. Swanson, D.L. Harmon, and J.C. Matthews (2001). Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas. J. Anim. Sci. 79(5), 1329–1336.

    PubMed  CAS  Google Scholar 

  • Inagaki, N., H. Kuromi, T. Gonoi, Y. Okamoto, H. Ishida, Y. Seino et al. (1995). Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 9(8), 686–691.

    PubMed  CAS  Google Scholar 

  • Isa, T., M. Iino, and S. Ozawa (1996). Spermine blocks synaptic transmission mediated by Ca2+-permeable AMPA receptors. NeuroReport 7(3), 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T., K. Moriyoshi, H. Sugihara, K. Sakurada, H. Captain, M. Yokoi et al. (1993). Molecular characterization of the family of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268(4), 2836–2843.

    PubMed  CAS  Google Scholar 

  • Jacobson, L. and R. Sapolsky (1991). The role of the hippocampus in feedback regulation of the hypothalamicpituitary-adrenocortical axis. Endocr. Rev. 12(2), 118–134.

    PubMed  CAS  Google Scholar 

  • Keller, B.U., M. Blaschke, R. Rivosecchi, M. Hollmann, S.F. Heinemann, and A. Konnerth (1993). Identification of a subunit-specific antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor channels. Proc. Natl. Acad. Sci. USA 90(2), 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Kleitman, N. and M.A. Holzwarth (1985). Catecholaminergic innervation of the rat adrenal cortex. Cell Tissue Res. 241(1), 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, H. (1985). Immunohistochemical analysis of the localization of neuropeptides in the adrenal gland. Arch. Histo. Jap. 48(5), 453–481.

    CAS  Google Scholar 

  • Kristensen, P. (1993). Differential expression of AMPA glutamate receptor mRNAs in the rat adrenal gland. FEBS Lett. 322(1–2), 14–18.

    Article  Google Scholar 

  • Lacroix, A., N. N’Diaye, J. Tremblay, and P. Hamet (2001). Ectopic and abnormal hormone receptors in adrenal Cushing’s syndrome. Endroc. Rev. 22(1), 75–110.

    Article  CAS  Google Scholar 

  • Laketic-Ljubojevic, I., L.J. Suva, F.J.M. Maathuis, D. Sanders, and T.M. Skerry (1999). Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 25(6), 631–637.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-A., Z. Long, N. Nimura, T. Iwatsubo, K. Imai, and H. Homma (2001). Localization, transport, and uptake of D-aspartate in the rat adrenal and pituitary glands. Arch. Biochem. Biophys. 385(2), 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, S., C. Rogers, M. Dumont, V.K. Shukla, C. Lapierre, J. Prasad et al. (1995). Histogranin, a modified histone H4 fragment endowed with N-methyl-D-aspartate antagonist and immunostimulatory activities. Life Sci. 56(15), 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, S., V.K. Shukla, C. Rogers, I.H., Ibrahim, C. Lapierre, P. Parent et al. (1993). Isolation and characterization of histogranin, a natural peptide with NMDA receptor antagonist activity. Eur. J. Pharmacol. 245(3), 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.J., S. Bovetto, J.M. Carver, and T. Giordano (1996). Cloning of the cDNA for the human NMDA receptor NR2C subunit and its expression in the central nervous system and periphery. Brain Res. Mol. Brain Res. 43(1–2), 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W. and S.C. Kinnamon (1999). Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J. Neurophysiol. 82(5), 2061–2069.

    PubMed  CAS  Google Scholar 

  • Lipton, S.A. and P.A. Rosenberg (1994). Excitatory amino acids as a final common pathway for neurologic disorders. New Engl. J. Med. 330(9), 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H.-P., S.S.-W. Tay, and S.K. Leong (1997). Localization of glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type in the pancreas of newborn guinea pigs. Pancreas 14(4), 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn-Smith, I.J., K.D. Phend, J.B. Minson, P.M. Pilowsky, and J.P. Chalmers (1992). Glutamate-immunoreactive synapses on retrogradely-labelled sympathetic pregnanglionic neurons in rat thoracic spinal cord. Brain Res. 581(1), 67–80.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, M.J. and L.A. Fahien (2000). Glutamate is not a messenger in insulin secretion. J. Biol. Chem. 275(44), 34025–34027.

    Article  PubMed  CAS  Google Scholar 

  • Maechler, P. and C.B. Wollheim (1999). Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402(6762), 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Manfras, B.J., W.A. Rudert, M. Trucco, and B.O. Boehm (1994). Cloning and characterization of a glutamate transporter cDNA from human brain and pancreas. Biochem. Biophys. Acta 1195(1), 185–188.

    PubMed  CAS  Google Scholar 

  • Meldrum, B. and J. Garthwaite (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11(9), 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Michaels, R.L. and S.M. Rothman (1990). Glutamate neurotoxicity in vitro: Antagonist pharmacology and intracellular calcium concentrations. J. Neurosci. 10(1), 283–292.

    PubMed  CAS  Google Scholar 

  • Miyazaki, J., K. Araki, E. Yamato, H. Ikegami, T. Asano, T. Shibasaki et al. (1990). Establishment of a pancreatic β-cell line: Special reference to expression of glucose transporter isoforms. Endocrinology 127(1), 126–132.

    PubMed  CAS  Google Scholar 

  • Molnar, E., A. Varadi, A.R.J. McIlhinney, and S.J.H. Ashcroft (1995). Identification of functional ionotropic glutamate receptor proteins in pancreatic β-cells and in islets of Langerhans. FEBS Lett. 371(3), 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Morhenn, V.B., N.S. Waleh, J.N. Mansbridge, D. Unson, A. Zolotorev, P. Cline et al. (1994). Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur. J. Pharmacol. 268(3), 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Morley, P., S. MacLean, T.F. Gendron, D.L. Small, R. Tremblay, J.P. Durkin et al. (2000). Pharmacological and molecular characterization of glutamate receptors in the MIN6 pancreatic β-cell line. Neurol. Res. 22(4), 379–385.

    PubMed  CAS  Google Scholar 

  • Moroni, F., S. Luzzi, S. Franchi-Micheli, and L. Zilletti (1986). The presence of N-methyl-D-aspartate-type receptors for glutamic acid in the guinea pig myenteric plexus. Neurosci. Lett. 68(1), 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Munger, B.L. (1981). Morphological characterization of islet cell diversity. In S.J. Cooperstein and D. Watkins, (eds), The Islets of Langerhans. Academic Press, New York, pp. 3–34.

    Google Scholar 

  • Nankova, B.B. and E.L. Sabban (1999). Multiple signaling pathways exist in the stress-triggered regulation of gene expression for catecholamine biosynthetic enzymes and several neuropeptides in the rat adrenal medulla. Acta. Physiol. Scand. 167(1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, T., K. Morita, K. Kinjo, and A. Tsujimoto (1982). Stimulation of catecholamine release from isolated adrenal glands by some amino acids. Japan. J. Pharmacol. 32(2), 291–297.

    CAS  Google Scholar 

  • Noble, E.P., M. Bommer, D. Liebisch, and A. Herz (1988). H1-histaminergic activation of catecholamine release by chromaffin cells. Biochem. Pharmacol. 37(2), 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y. (1986). In S.L. Erdo and N.G. Bowery (eds), Localization and function of GABA in the pancreatic islets. GABAergic Mechanisms in the Mammalian Periphery. Raven Press, New York, pp. 223–240.

    Google Scholar 

  • O’Shea, R.D., P.D. Marley, L.D. Mercer, and P.M. Bert (1992). Biochemical, autoradiographic and functional studies on a unique glutamate binding site in adrenal gland. J. Auton. Nerv. Syst. 40(1), 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, S., H. Kamiya, and K. Tsuzuki (1998). Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54(5), 581–618.

    Article  PubMed  CAS  Google Scholar 

  • Patton, A.J., P.G. Genever, M.A. Birch, L.J. Suva, and T.M. Skerry (1998). Expression of an N-methyl-D-aspartate-type receptor by human and rat osteoblasts and osteoclasts suggests a novel glutamate signaling pathway in bone. Bone 22(6), 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli, D., M.M. Magalhaes, and M.C. Magalhaes (1998). Direct effects of stress on adrenocortical function. Horm. Metab. Res. 30(6–7), 464–474.

    PubMed  CAS  Google Scholar 

  • Pipeleers, D., R. Kiekens and P. In’t Veld (1981). In F.M. Ashcroft and S.J.H. Ashcroft (eds), Morphology of the pancreatic B-cells. Insulin, Molecular Biology to Pathology, IRL Press, Oxford, pp. 5–31.

    Google Scholar 

  • Polack, J.M., S.R. Bloom, and P.J. Marangos (1984). In S. Falkner, R. Hakanson, and F. Sundler (eds), Neuronspecific enolase, a marker of neuroendocrine cells. Evolution and Tumor Pathology of the Neuroendocrine System, Elsevier, Amesterdam, pp. 433–542.

    Google Scholar 

  • Rajan, A.S., L. Aguilar-Bryan, D.A. Nelson, G.C. Yaney, W.H. Hsu, D.L. Kunze et al. (1990). Ion channels and insulin secretion. Diabetes Care 13(3), 340–363.

    PubMed  CAS  Google Scholar 

  • Ren, J., H.-Z. Hu, S. Liu, Y. Xia, and J.D. Wood (2000). Glutamate receptors in the enteric nervous system: Ionotropic or metabotropic? Neurogastroenterol. Mot. 12(3), 257–264.

    Article  CAS  Google Scholar 

  • Robertson, B.S., B.E. Satterfield, S.I. Said, and R.D. Dey (1998). N-methyl-D-aspartate receptors are expressed by intrinsic neurons of rat larynx and esophagus. Neurosci. Lett. 244(2), 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S.M. and J.W. Olney (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19(2), 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Rorsman, P., P.-O. Berggren, K. Bokvist, H. Ericson, H. Mohler, C.-G. Ostenson et al. (1989). Glucose-inhibition of glucagons secretion involves activation of GABAA-receptor chloride channels. Nature 341(6239), 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Rorsman, P. and G. Trube (1986). Calcium and delayed potassium currents in mouse pancreatic β cells under voltage clamp conditions. J. Physiol. 374, 531–550.

    PubMed  CAS  Google Scholar 

  • Said, S.I. (1999). Glutamate receptors and asthmatic airway disease. Trends Pharmacol. Sci. 20(4), 132–134.

    Article  PubMed  CAS  Google Scholar 

  • Said, S.I., H.I. Berisha, and H. Pkbaz (1996). Excitotoxicity in the lung: N-methyl-D-aspartate-induced nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. USA 93(10), 4688–4692.

    Article  PubMed  CAS  Google Scholar 

  • Said, S.I., R.D. Dey, and K. Dickman (2001). Glutamate signaling in the lung. Trends Pharmacol. Sci. 22(7), 344–345.

    Article  PubMed  CAS  Google Scholar 

  • Satin, L.S. and T.A. Kinard (1998). Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: What messages do acetylcholine, glutamate and GABA transmit? Endocrine 8(3), 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Schwendt, M. and D. Jezova (2001). Gene expression of NMDA receptor subunits in rat adrenals under basal and stress conditions. J. Physiol. Pharmacol. 52(4), 719–727.

    PubMed  CAS  Google Scholar 

  • Sehlin, J. (1972). Uptake and oxidation of glutamic acid in mammalian pancreatic islets. Hormones 3(3), 156–166.

    PubMed  CAS  Google Scholar 

  • Shannon, H.E. and B.D. Sawyer (1989). Glutamate receptors of the N-methyl-D-aspartate subtype in the myenteric plexus of the guinea pig ileum. J. Pharmacol. Exp. Ther. 251(2), 518–523.

    PubMed  CAS  Google Scholar 

  • Shukla, V.K., S. Lemaire, M. Dumont, and Z. Merali (1995). N-methyl-D-aspartate receptor antagonist activity and phencyclidine-like behavioral effects of the pentadecapeptide, [Ser1]histogranin. Pharmacol. Biochem. Behav. 50(1), 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Skerry, T.M. and P.G. Genever (2001). Glutamate signaling in non-neuronal tissues. Trends Pharmacol. Sci. 22(4), 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Small, D.L., P. Morley, and A.M. Buchan (1999). In A. Shuaib (ed.), Glutamate receptor antagonists for the treatment of acute cerebral ischemia. Management of Acute Stroke. Martin Dekker, New York, pp. 341–361.

    Google Scholar 

  • Sommer, B., M. Kohler, R. Sprengel, and P.H. Seeburg (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67(1), 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Stone, T.W. (2000). Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol. Sci. 21(4),149–154.

    Article  PubMed  CAS  Google Scholar 

  • Storto, M., U. de Grazia, G. Battaglia, M.P. Felli, M. Maroder, A. Gulino et al. (2000). Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells. J. Neuroimmunol. 109(2), 112–120.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., I. Ito, and C. Hirono (1987). A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325(6104), 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Sureda, F., A. Copani, V. Bruno, T. Knopfel, G. Meltzger, and F. Nicoletti (1997). Metabotropic glutamate receptor agonists stimulate polyphosphoinositide hydrolysis in primary cultures of rat hepatocytes. Eur. J. Pharmacol. 338(2), R1–R2.

    Article  PubMed  CAS  Google Scholar 

  • Taverna, F.A., B.-R. Cameron, D.L. Hampson, L.-Y. Wang, and J.F. MacDonald (1994). Sensitivity of AMPA receptors to pentobarbital. Eur. J. Pharm. 267(3), R3–R5.

    Article  CAS  Google Scholar 

  • Teitelman, G. and J.K. Lee (1987). Cell lineage analysis of pancreatic islet cell development: Glucagons and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev. Biol. 121(2), 454–466.

    Article  PubMed  CAS  Google Scholar 

  • Tong, Q., R. Ouedraogo and A.L. Kirchgessner (2002). Localization and function of group III metabotropic glutamate receptors in rat pancreatic islets. Am. J. Physio. Endocrinol. Metab. 282(6), E1324–E1333.

    CAS  Google Scholar 

  • Twyman, R.E., L.C. Gahring, J. Spiess, and S.W. Rogers (1995). Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 14(4), 755–762.

    Article  PubMed  CAS  Google Scholar 

  • Tymianski, M., M.P. Charlton, P.L. Carlen, and C.H. Tator (1993). Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13(5), 2085–2104.

    PubMed  CAS  Google Scholar 

  • Wang, Y., D.L. Small, D.B. Stanimirovic, P. Morley, and J.P. Durkin (1997). AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389(6650), 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., M. Mishina, and Y. Inoue (1994). Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci. Lett. 165(1–2), 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, C.D., V. Gundersen, and T.A. Verdoorn (1998). A high affinity glutamate/aspartate transport system in pancreatic islets of Langerhans modulates glucose-stimulated insulin secretion. J. Biol. Chem. 273(3), 1647–1653.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, C.D., J.G. Partridge, T.L. Yao, J.M. Moates, W.A. Magnuson, and T.A. Verdoorn (1998). Activation of glycine and glutamate receptors increases intracellular calcium in cells derived from the endocrine pancreas. Mol. Pharmacol. 54(4), 639–646.

    PubMed  CAS  Google Scholar 

  • Weaver, C.D., T.L. Yao, A.C. Powers, and T.A. Verdoorn (1996). Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem. 271(22), 12977–12984.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K.A. and C.-M. Tang (1993). Benzothiadiazides inhibit rapid glutamate receptor desensitisation and enhance glutamatergic synaptic currents. J. Neurosci. 13(9), 3904–3915.

    PubMed  CAS  Google Scholar 

  • Yoneda, Y. and K. Ogita (1986). Localization of [3H]glutamate binding sites in rat adrenal medulla. Brain Res. 383(1–2), 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, Y. and K. Ogita (1987). Enhancement of [3H]glutamate binding by N-methyl-D-aspartic acid in rat adrenal. Brain Res. 406(1–2), 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, Y. and K. Ogita (1989). Characterization of quisqualate-sensitive [3H]Glutamate binding activity solubilized from rat adrenal. Neurochem. Int. 15(2), 137–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Gendron, T.F., Morley, P. (2005). Glutamate Receptors in Endocrine Tissues. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_8

Download citation

Publish with us

Policies and ethics