Skip to main content

Role of Nitric Oxide and Membrane Phospholipid Polyunsaturation in Oxidative Cell Death

  • Chapter
Phospholipid Metabolism in Apoptosis

Part of the book series: Subcellular Biochemistry ((SCBI,volume 36))

  • 227 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud, H. M., and Hazen, S. L., 2000, Nitric oxide is a physiological substrate for mammalian peroxidases, J. Biol. Chem. 275: 37524–37532.

    Article  PubMed  CAS  Google Scholar 

  • Awad, A. B., and Spector, A. A., 1976, Modification of the fatty acid composition of Ehrlich ascites tumor cell plasma membranes, Biochim. Biophys. Acta 426: 723–731.

    Article  CAS  Google Scholar 

  • Barclay, L. R. C., 1993, Model biomembranes — Quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress, Canadian Journal of Chemistry 71: 1–16

    Article  CAS  Google Scholar 

  • Beck, S. A., Smith, K. L., and Tisdale, M. J., 1991, Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover, Cancer Res. 51: 6089–6093.

    PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., and Koppenol, W. H., 1996, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly, Am. J. Physiol. 271: C1424–1437.

    PubMed  CAS  Google Scholar 

  • Bertling, C. J., Lin, F., and Girotti, A. W., 1996, Role ofhydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells, Photochem. Photobiol. 64: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Bogdan, C., 2001, Nitric oxide and the regulation of gene expression, Trends Cell Biol. 11: 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Borek, C., Ong, A., Mason, H., Donahue, L., and Biaglow, J. E., 1986, Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms, Proc. Natl. Acad. Sci. USA 83: 1490–1494.

    Article  PubMed  CAS  Google Scholar 

  • Bovaris, A., 2000, The mitochondrial production of free radicals, in: Sunrise Free Radical School (G.R. Buettner, ed.), Oxygen Society, San Diego, pp. 1–15.

    Google Scholar 

  • Bredt, D. S., Hwang, P. M., and Snyder, S. H., 1990, Localization of nitric oxide synthase indicating a neural role for nitric oxide, Nature 347: 768–770.

    Article  PubMed  CAS  Google Scholar 

  • Broekman, M. J., Eiroa, A. M., and Marcus, A. J., 1991, Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: blockade of aggregation and secretion by an aspirin-insensitive mechanism, Blood 78: 1033–1040.

    PubMed  CAS  Google Scholar 

  • Buettner, G. R., 1993, The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate, Arch. Biochem. Biophys. 300: 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Buettner, G. R., Kelley, E. E., and Burns, C. P., 1993, Membrane lipid free radicals produced from L1210 murine leukemia cells by photofrin photosensitization: an electron paramagnetic resonance spin trapping study, Cancer Res. 53: 3670–3673.

    PubMed  CAS  Google Scholar 

  • Buettner, G. R., and Need, M. J., 1985, Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative, ascorbate and light, Cancer Lett. 25: 297–304.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., 1988, Membranes and cancer chemotherapy, Cancer Invest. 6: 439–451

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and Dudley, D. T., 1982, Temperature dependence and effect of membrane lipid alteration on melphalan transport in L1210 murine leukemia cells, Biochem. Pharmacol. 31: 2116–2119.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., Halabi, S., Clamon, G. H., Hars, V., Wagner, B. A., Hohl, R. J., Lester, E., Kirshner, J. J., Vinciguerra, V., and Paskett, E., 1999, Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer and leukemia group B study 9473, Clin. Cancer Res. 5: 3942–3947.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Haugstad, B. N., Mossman, C. J., North, J. A., and Ingraham, L. M., 1988, Membrane lipid alteration: effect on cellular uptake of mitoxantrone, Lipids 23: 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., Haugstad, B. N., and North, J. A., 1987, Membrane transport of mitoxantrone by L1210 leukemia cells, Biochem. Pharmacol. 36: 857–860.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., Luttenegger, D. G., and Dudley, D. T., 1980, Fatty acid alteration of L1210 murine leukemia cells. Growth rate and stability of lipid changes in culture, J. Natl. Cancer Inst. 65: 987–991.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Luttenegger, D. G., Dudley, D. T., Buettner, G. R., and Spector, A. A., 1979, Effect of modification of plasma membrane fatty acid composition on fluidity and methotrexate transport in L1210 murine leukemia cells, Cancer Res. 39: 1726–1732.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Luttenegger, D. G., and Spector, A. A., 1978, Effect of dietary fat saturation on survival of mice with L1210 leukemia, J. Natl. Cancer Inst. 61: 513–515.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Luttenegger, D. G., Wei, S. P., and Spector, A. A., 1977, Modification of the fatty acid composition of L1210 murine leukemia cells, Lipids 12: 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and North, J. A., 1986, Adriamycin transport and sensitivity in fatty acid-modified leukemia cells, Biochim. Biophys. Acta 888: 10–17.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., North, J. A., Petersen, E. S., and Ingraham, L. M., 1988, Subcellular distribution of doxorubicin: comparison of fatty acid-modified and unmodified cells, Proc. Soc. Exp. Biol. Med. 188: 455–460.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Petersen, E. S., North, J. A., and Ingraham, L. M., 1989, Effect of docosahexaenoic acid on rate of differentiation of HL-60 human leukemia, Cancer Res. 49: 3252–3258.

    PubMed  CAS  Google Scholar 

  • Burns, C. P., Rosenberger, J. A., and Luttenegger, D. G., 1983, Selectivity in modification of the fatty acid composition of normal mouse tissues and membranes in vivo, Ann. Nutr. Metab. 27: 268–277

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and Spector, A. A., 1987, Membrane fatty acid modification in tumor cells: a potential therapeutic adjunct, Lipids 22: 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and Wagner, B. A., 1993, Effects of exogenous lipids on cancer and cancer chemotherapy. Implications for treatment, Drug Saf. 8: 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. P., and Wagner, B. A., 1991, Heightened susceptibility of fish oil polyunsarurate-enriched neoplastic cells to ethane generation during lipid peroxidation, J. Lipid Res. 32: 79–87.

    PubMed  CAS  Google Scholar 

  • Chamulitrat, W., 1998, Nitric oxide inhibited peroxyl and alkoxyl radical formation with concomitant protection against oxidant injury in intestinal epithelial cells, Arch. Biochem. Biophys. 355: 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. A., Krishna, M. C., Pacelli, R., DeGraff, W., Liebmann, J., Mitchell, J. B., Russo, A., and Wink, D. A., 1997, Nitric oxide enhancement of melphalan-induced cytotoxicity, Br. J. Cancer 76: 325–334

    PubMed  CAS  Google Scholar 

  • Cosgrove, J. P., Church, D. F., and Pryor, W. A., 1987, The kinetics of the autoxidation of polyunsaturated fatty acids, Lipids 22: 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Croute, F., Soleilhavoup, J. P., Vidal, S., Dupouy, D., and Planel, H., 1982, Extracellular hydrogen peroxide produced under irradiation as the most important factor in the lethality of gamma-irradiated Paramecium tetraurelia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Dong, Z., Staroselsky, A. H., Qi, X., Xie, K., and Fidler, I. J., 1994, Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells, Cancer Res. 54: 789–793.

    PubMed  CAS  Google Scholar 

  • Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and van der Vliet, A., 1998, Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils, Nature 391: 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Formigli, L., Papucci, L., Tani, A., Schiavone, N., Tempestini, A., Orlandini, G. E., Capaccioli, S., and Orlandini, S. Z., 2000, Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis, J. Cell Physiol. 182: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Gabor, H., and Abraham, S., 1986, Effect of dietary menhaden oil on tumor cell loss and the accumulation of mass of a transplantable mammary adenocarcinoma in BALB/c mice, J. Natl. Cancer Inst. 76: 1223–1229.

    PubMed  CAS  Google Scholar 

  • Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W. A., and Ziche, M., 1998, Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer, J. Natl. Cancer Inst. 90: 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena, G., and Folkman, J., 1998, Is there a role for nitric oxide in tumor angiogenesis?, J Natl. Cancerlnst. 90: 560–561.

    Article  CAS  Google Scholar 

  • Garg, U. C., and Hassid, A., 1989, Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators, Am. J. Physiol. 257: F60–66.

    PubMed  CAS  Google Scholar 

  • Giloni, L., Takeshita, M., Johnson, F., Iden, C., and Grollman, A. P., 1981, Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage, J. Biol. Chem. 256: 8608–8615.

    PubMed  CAS  Google Scholar 

  • Gonzalez, M. J., Schemmel, R. A., Gray, J. I., Dugan, L., Jr., Sheffield, L. G., and Welsch, C. W., 1991, Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels, Carcinogenesis 12: 1231–1235.

    Article  PubMed  CAS  Google Scholar 

  • Gorbunov, N. V., Tyurina, Y. Y., Salama, G., Day, B. W., Claycamp, H. G., Argyros, G., Elsayed, N. M., and Kagan, V. E., 1998, Nitric oxide protects cardiomyocytes against tertbutyl hydroperoxide-induced formation of alkoxyl and peroxyl radicals and peroxidation of phosphatidylserine, Biochem. Biophys. Res. Commun. 244: 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Guffy, M. M., North, J. A., and Burns, C. P., 1984, Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells, Cancer Res. 44: 1863–1866.

    PubMed  CAS  Google Scholar 

  • Guffy, M. M., Rosenberger, J. A., Simon, I., and Burns, C. P., 1982, Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells, Cancer Res. 42: 3625–3630.

    PubMed  CAS  Google Scholar 

  • Gupta, M. P., Evanoff, V., and Hart, C. M., 1997, Nitric oxide attenuates hydrogen peroxide-mediated injury to porcine pulmonary artery endothelial cells, Am. J. Physiol. 272: LI 133–1141.

    Google Scholar 

  • Hardman, W. E., Barnes, C. J., Knight, C. W., and Cameron, I. L., 1997, Effects of iron supplementation and ET-18-OCH3 on MDA-MB 231 breast carcinomas in nude mice consuming a fish oil diet, Br. J. Cancer 76: 347–354

    PubMed  CAS  Google Scholar 

  • Hardman, W. E., Moyer, M. P., and Cameron, I. L., 1999, Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects, Br. J. Cancer 81: 440–448.

    Article  PubMed  CAS  Google Scholar 

  • Hart, C. M., Tolson, J. K., and Block, E. R., 1991, Supplemental fatty acids alter lipid peroxidation and oxidant injury in endothelial cells, Am. J. Physiol. 260: L481–488.

    PubMed  CAS  Google Scholar 

  • Hogg, N., Kalyanaraman, B., Joseph, J., Struck, A., and Parthasarathy, S., 1993, Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis, FEBS Lett. 334: 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Huie, R. E., and Padmaja, S., 1993, The reaction of NO with superoxide, Free Radic, Res. Commun. 18: 195–199

    Article  CAS  Google Scholar 

  • Ignarro, L. I, Bush, P. A., Buga, G. M., Wood, K. S., Fukuto, J. M., and Rajfer, J., 1990, Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle, Biochem. Biophys. Res. Commun. 170: 843–850.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Byrns, R. E., Buga, G. M., and Wood, K.. S., 1987, Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical, Circ. Res. 61: 866–879.

    PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Zhu, L., and Beckman, J. S., 1992, Peroxynitrite formation from macrophage-derived nitric oxide, Arch. Biochem. Biophys. 298: 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, D. C., Charles, I. G., Thomsen, L. L., Moss, D. W., Holmes, L. S., Baylis, S. A., Rhodes, P., Westmore, K., Emson, P. C., and Moncada, S., 1995, Roles of nitric oxide in tumor growth, Proc. Natl. Acad. Sci. U S A 92: 4392–4396.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, J., Harel, S., and Granit, R., 1991, Nitric oxide as an antioxidant, Arch. Biochem. Biophys. 289: 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Karmali, R. A., Marsh, J., and Fuchs, C., 1984, Effect of omega-3 fatty acids on growth of a rat mammary tumor, J. Natl. Cancer Inst. 73: 457–461.

    PubMed  CAS  Google Scholar 

  • Keizer, H. G., Pinedo, H. M., Schuurhuis, G. J., and Joenje, H., 1990, Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity, Pharmacol. Ther. 47: 219–231

    Article  PubMed  CAS  Google Scholar 

  • Kelley, E. E., Buettner, G. R., and Burns, C. P., 1997, Production of lipid-derived free radicals in L1210 murine leukemia cells is an early oxidative event in the photodynamic action of Photofrin, Photochem. Photobiol. 65: 576–580.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, E. E., Domann, F. E., Buettner, G. R., Oberley, L. W., and Burns, C. P., 1997, Increased efficacy of in vitro Photofrin photosensitization of human oral squamous cell carcinoma by iron and ascorbate, J. Photochem. Photobiol. B 40: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, E. E., Wagner, B. A., Buettner, G. R., and Burns, C. P., 1999, Nitric oxide inhibits iron-induced lipid peroxidation in HL-60 cells, Arch. Biochem. Biophys. 370: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Komiyama, T., Kikuchi, T., and Sugiura, Y., 1986, Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen, J. Pharmacobiodyn. 9: 651–664.

    PubMed  CAS  Google Scholar 

  • Kuzin, B., Roberts, I., Peunova, N., and Enikolopov, G., 1996, Nitric oxide regulates cell proliferation during Drosophila development, Cell 87: 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Liepkalns, V. A., and Spector, A. A., 1975, Alteration of the fatty acid composition of Ehrlich ascites tumor cell lipids, Biochem. Biophys. Res. Commun. 63: 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Marnett, L. J., and Wilcox, A. L., 1995, The chemistry of lipid alkoxyl radicals and their role in metal-amplified lipid peroxidation, Biochem. Soc. Symp. 61: 65–72

    PubMed  CAS  Google Scholar 

  • Mitchell, J. B., Wink, D. A., DeGraff, W., Gamson, J., Keefer, L. K., and Krishna, M. C., 1993, Hypoxic mammalian cell radiosensitization by nitric oxide, Cancer Res. 53: 5845–5848.

    PubMed  CAS  Google Scholar 

  • Moncada, S., and Higgs, A., 1993, The L-arginine-nitric oxide pathway, N. Engl. J. Med. f329: 2002–2012.

    Article  Google Scholar 

  • Niki, E., Saito, T., Kawakami, A., and Kamiya, Y., 1984, Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C, J. Biol. Chem. 259: 4177–4182.

    PubMed  CAS  Google Scholar 

  • O’Donnell, V. B., Chumley, P. H., Hogg, N., Bloodsworth, A., Darley-Usmar, V. M., and Freeman, B. A., 1997, Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol, Biochemistry 36: 15216–15223.

    Google Scholar 

  • Ozgen, U., Savasan, S., Stout, M., Buck, S., and Ravindranath, Y., 2000, Further elucidation of mechanism of resistance to vincristine in myeloid cells: role of hypochlorous acid in degradation of vincristine by myeloperoxidase, Leukemia 14: 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, E. S., Kelley, E. E., Modest, E. J., and Burns, C. P., 1992, Membrane lipid modification and sensitivity of leukemic cells to the thioether lipid analog BM 41.440, Cancer Res. 52: 6263–6269.

    PubMed  CAS  Google Scholar 

  • Peus, D., Vasa, R. A., Meves, A., Pott, M., Beyerle, A., Squillace, K., and Pittelkow, M. R., 1998, H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes, J. Invest. Dermatol. 110: 966–971.

    Article  PubMed  CAS  Google Scholar 

  • Porter, N. A., 1984, Chemistry of lipid peroxidation, Methods Enzymol. 105: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Qian, S. Y., Wang, H. P., Schafer, F. Q., and Buettner, G. R., 2000, EPR detection of lipid-derived free radicals from PUFA, LDL, and cell oxidations, Free Radic. Biol. Med. 29: 568–579.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J. C., 1999, Dysregulation of apoptosis in cancer, J. Clin. Oncol. 17: 2941–2953.

    PubMed  CAS  Google Scholar 

  • Reed, J. C., 2000, Mechanisms of apoptosis, Am. J. Pathol. 157: 1415–1430.

    PubMed  CAS  Google Scholar 

  • Riley, P. A., 1994, Free radicals in biology: oxidative stress and the effects of ionizing radiation, Int. J. Radial. Biol. 65: 27–33.

    Article  CAS  Google Scholar 

  • Rose, D. P., Connolly, J. M., and Meschter, C. L., 1991, Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice, J. Natl. Cancer Inst. 83: 1491–1495.

    Article  PubMed  CAS  Google Scholar 

  • Rubbo, H., Parthasarathy, S., Barnes, S., Kirk, M., Kalyanaraman, B., and Freeman, B. A., 1995, Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives, Arch. Biochem. Biophys. 324: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Rubbo, H., Radi, R., Anselmi, D., Kirk, M., Barnes, S., Butler, J., Eiserich, J. P., and Freeman, B. A., 2000, Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate, J. Biol. Chem. 275: 10812–10818.

    Article  PubMed  CAS  Google Scholar 

  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., and Freeman, B. A., 1994, Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives, J. Biol. Chem. 269: 26066–26075.

    PubMed  CAS  Google Scholar 

  • Saran, M., and Bors, W., 1997, Radiation chemistry of physiological saline reinvestigated: evidence that chloride-derived intermediates play a key role in cytotoxicity, Radiat. Res. 147: 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Sergent, O., Griffon, B., Morel, I., Chevanne, M., Dubos, M. P., Cillard, P., and Cillard, J., 1997, Effect of nitric oxide on iron-mediated oxidative stress in primary rat hepatocyte culture, Hepatology 25: 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A., and Burns, C. P., 1987, Biological and therapeutic potential of membrane lipid modification in tumors, Cancer Res. 47: 4529–4537.

    PubMed  CAS  Google Scholar 

  • Sperandio, S., de Belle, I., and Bredesen, D. E., 2000, An alternative, nonapoptotic form of programmed cell death, Proc. Natl. Acad. Sci. USA 97: 14376–14381.

    Article  PubMed  CAS  Google Scholar 

  • Spitz, D. R., Kinter, M. T., Kehrer, J. P., and Roberts, R. J., 1992, The effect of monosaturated and polyunsaturated fatty acids on oxygen toxicity in cultured cells, Pediatr. Res. 32: 366–372.

    Article  PubMed  CAS  Google Scholar 

  • Struck, A. T., Hogg, N., Thomas, J. P., and Kalyanaraman, B., 1995, Nitric oxide donor compounds inhibit the toxicity of oxidized low-density lipoprotein to endothelial cells, FEBS Lett. 361: 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Tisdale, M. J., and Dhesi, J. K., 1990, Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model, Cancer Res. 50: 5022–5026.

    PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P., 1994, Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content, Biochemistry 33: 4449–4453.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P., 1993, Increased generation of lipid-derived and ascorbate free radicals by L1210 cells exposed to the ether lipid edelfosine, Cancer Res. 53: 711–713

    PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P., 1992, Membrane peroxidative damage enhancement by the ether lipid class of antineoplastic agents, Cancer Res. 52: 6045–6051.

    PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., and Burns, C. P., 1996, Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells, Arch. Biochem. Biophys. 334: 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, B. A., Buettner, G. R., Oberley, L. W., and Burns, C. P., 1998, Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species, Cancer Res. 58: 2809–2816.

    PubMed  CAS  Google Scholar 

  • Waldman, S. A., and Murad, F., 1988, Biochemical mechanisms underlying vascular smooth muscle relaxation: the guanylate cyclase-cyclic GMP system, J. Cardiovasc. Phamacol. 12: S115–118.

    Google Scholar 

  • Wigmore, S. J., Barber, M. D., Ross, J. A., Tisdale, M. J., and Fearon, K. C., 2000, Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer, Nutr. Cancer 36: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, A. L., and Marnett, L. J., 1993, Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: a key step in hydroperoxide-amplified lipid peroxidation, Chem. Res. Toxicol. 6: 413–416.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D. A., Cook, J. A., Christodoulou, D., Krishna, M. C., Pacelli, R., Kim, S., DeGraff, W., Gamson, J., Vodovotz, Y., Russo, A., and Mitchell, J. B., 1997, Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin, Nitric Oxide 1: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D. A., Cook, J. A., Pacelli, R., Liebmann, J., Krishna, M. C., and Mitchell, J. B., 1995, Nitric oxide (NO) protects against cellular damage by reactive oxygen species, Toxicol. Lett. 82–83: 221–226.

    Article  PubMed  Google Scholar 

  • Wink, D. A., Feelisch, M., Fukuto, J., Chistodoulou, D., Jourďheuil, D., Grisham, M. B., Vodovotz, Y., Cook, J. A., Krishna, M., DeGraff, W. G., Kim, S., Gamson, J., and Mitchell, J. B., 1998, The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO, Arch. Biochem. Biophys. 351: 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D. A., Hanbauer, I., Krishna, M. C., DeGraff, W., Gamson, J., and Mitchell, J. B., 1993, Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc. Natl. Acad. Sci. USA 90: 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D. A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M. W., and Mitchell, J. B., 1998, The multifaceted roles of nitric oxide in cancer, Carcinogenesis 19: 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R., Falch, J., and Wiegand, R. D., 1975, Hepatoma, host liver, and normal rat liver neutral lipids as affected by diet, Lipids 10: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, N., Oda, O., and Nagao, S., 1996, Nitric oxide released from zwitterionic polyamine/NO adducts inhibits Cu2+-induced low density lipoprotein oxidation, FEBS Lett. 398: 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Nazhat, N. B., Jiang, X., Kelsey, S. M., Blake, D. R., Newland, A. C., and Morris, C. J., 1996, Adriamycin stimulates proliferation of human lymphoblastic leukaemic cells via a mechanism of hydrogen peroxide (H 2 O 2 ) production, Br. J. Hemeatol. 95: 339–344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Patrick Burns, C., Kelley, E.E., Wagner, B.A., Buettner, G.R. (2004). Role of Nitric Oxide and Membrane Phospholipid Polyunsaturation in Oxidative Cell Death. In: Quinn, P.J., Kagan, V.E. (eds) Phospholipid Metabolism in Apoptosis. Subcellular Biochemistry, vol 36. Springer, Boston, MA. https://doi.org/10.1007/0-306-47931-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47931-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46782-0

  • Online ISBN: 978-0-306-47931-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics