Skip to main content

Dipeptidyl Peptidase IV Substrates

An update on in vitro peptide hydrolysis by human DPPIV

  • Chapter
Dipeptidyl Aminopeptidases in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 524))

Conclusions

Many bioactive peptides qualify to be DPPIV substrates. Considering the ubiquitous presence of the enzyme - on cells, on vesicles, in fluids - it is hardly surprising that many of them are indeed found truncated in vivo. However, not all substrates are cleaved with the same efficiency. The molecular properties of DPPIV involved in substrate recognition are still poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yaron, A., Naider, F., 1993, Proline-dependent structural and biological properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol. 28: 31–81.

    PubMed  CAS  Google Scholar 

  2. De Meester, I., Korom, S., Van Damme, J., et al., 1999, CD26, let it cut or cut it down. Immunol. Today, 20: 367–75.

    PubMed  Google Scholar 

  3. Augustyns, K.., Bal, G., Thonus, G., et al., 1999, The unique properties of dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP IV inhibitors. Curr. Med Chem. 6: 311–27.

    PubMed  CAS  Google Scholar 

  4. Kähne, T., Lendeckel, U., Wrenger, S., et al., 1999, Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int. J. Mol. Med. 4: 3–15.

    PubMed  Google Scholar 

  5. Mentlein, R., 1999, Dipeptidyl-peptidase IV (CD26) — role in the inactivation of regulatory peptides. Regul. Pept. 85: 9–24.

    Article  PubMed  CAS  Google Scholar 

  6. De Meester, I., Durinx, C., Bal, G., et al., 2000, Natural substrates of dipeptidyl peptidase IV. Adv. Exp. Med. Biol. 477: 67–87.

    PubMed  Google Scholar 

  7. De Meester, I., Durinx, C., Proost, P., et al., 2002, DPIV — Natural Substrates of Medical Importance. In: Langner, J. and Ansorge, S., eds. Ectopeptidases. CD13/Aminopeptidase N and CD26/Dipeptidyl peptidase IV in Medicine and Biology. Pp 223–257. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  8. Mentlein, R., Gallwitz, B., Schmidt, W.E., 1993, Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-l(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214: 829–35.

    Article  PubMed  CAS  Google Scholar 

  9. Deacon, C.F., Hoist, J.J., 2002, Dipeptidyl peptidase IV inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective. Biochem Biophys Res Commun. 294:1–4.

    Article  PubMed  CAS  Google Scholar 

  10. Demuth, H., Hinke, S., Pederson, R., McIntosh, C., 2002, Rebuttal to Deacon and Holst: “Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1” versus “Dipeptidyl peptidase inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective”. Biochem Biophys Res Commun. 296: 229.

    Article  PubMed  CAS  Google Scholar 

  11. Rawlings, N.D., Polgar, L., Barrett, A.J., 1991, A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem. J. 279: 907–8.

    PubMed  CAS  Google Scholar 

  12. Martin, R.A., Cleary, D.L., Guido, D.M., et al., 1993, Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP-IV substrate specificity? Biochim. Biophys. Acta 1164: 252–60

    PubMed  CAS  Google Scholar 

  13. Pospisilik, J.A., Hinke, S.A., Pederson, R.A., et al. 2001, Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul. Pept. 96: 133–41.

    Article  PubMed  CAS  Google Scholar 

  14. Lambeir, A.M., Proost, P., Durinx, C., et al., 2001, Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J. Biol. Chem. 276: 29839–45.

    Article  PubMed  CAS  Google Scholar 

  15. Lambeir, A.M., Durinx, C., Proost, P., et al., 2001, Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. 507: 327–30.

    Article  PubMed  CAS  Google Scholar 

  16. Rahfeld, J., Schutkowski, M., Faust, J., et al., 1991, Extended investigation of the substrate specificity of dipeptidyl peptidase IV from pig kidney. Biol.Chem.Hoppe-Seyler 372: 313–18.

    PubMed  CAS  Google Scholar 

  17. Bongers, J., Lambros, T., Ahmad, M., et al., 1992, Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim. Biophys. Acta, 1122: 147–53.

    PubMed  CAS  Google Scholar 

  18. Püschel, G., Mentlein, R., Heymann, E., 1982, Isolation and characterization of dipeptidyl peptidase IV from human placenta. Eur. J. Biochem. 126: 359–65.

    PubMed  Google Scholar 

  19. Hoffmann, T., Reinhold, D., Kähne, T., et al., 1995, Inhibition of dipeptidyl peptidase IV (DPPIV) by anti-DP IV antibodies and non-substrate X-X-Pro-oligopeptides ascertained by capillary electrophoresis. J. Chromatogr. A 716: 355–62.

    Article  PubMed  CAS  Google Scholar 

  20. Kikuchi, M., Fukuyama, K., Epstein, W.L., 1988, Soluble dipeptidyl peptidase IV from terminal differentiated rat epidermal cells: purification and its activity on synthetic and natural peptides. Arch. Biochem. Biophys. 266: 369–76.

    Article  PubMed  CAS  Google Scholar 

  21. Fischer, G., Heins, J., Barth, A., 1983, The conformation around the peptide bond between the P1-and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim. Biophys. Acta 742: 452–62.

    PubMed  CAS  Google Scholar 

  22. Reutter, W., Baum, O., Löster, K., et al., 1995, Functional aspects of the three extracellular domains of dipeptidyl peptidase IV: characterization of glycolysation events, of the collagen-binding site and of endopeptidase activity. In: Fleischer, B., eds. Dipeptidyl peptidase IV (CD26) in metabolism and the immune response. Pp 55–78. Heidelberg: Springer-Verlag.

    Google Scholar 

  23. Bauvois, B., 1995, Modulation and functional diversity of dipeptidyl peptidase IV in murine and human systems. In: Fleischer, B., eds. Dipeptidyl peptidase IV (CD26) in metabolism and the immune response. Pp 99–110. Heidelberg: Springer-Verlag.

    Google Scholar 

  24. Bermpohl, F., Löster, K., Reutter, W., et al., 1998, Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett. 428: 152–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hinke, S.A., Kühn-Wache, K., Hoffmann, T., et al., 2002, Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1. Biochem. Biophys. Res. Commun. 291: 1302–8.

    Article  PubMed  CAS  Google Scholar 

  26. Mentlein, R., Dahms, P., Grandt, D., et al., 1993, Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul. Pept. 49: 133–44.

    Article  PubMed  CAS  Google Scholar 

  27. Pauly, R.P., Rosche, F., Wermann, M., et al., 1996, Investigation of glucose-dependent insulinotropic polypeptide-(1–42) and glucagon-like peptide-1-(7–36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J.Biol.Chem. 271: 23222–9.

    PubMed  CAS  Google Scholar 

  28. Lambeir, A.M., Proost, P., Scharpé, S. and De Meester, I., 2002, A kinetic study of Glucagon-like peptide 1 and Glucagon-like peptide 2 truncation by DPP IV, in vitro. Biochem. Pharmacol., in press

    Google Scholar 

  29. Sherwood, N.M., Krueckl, S.L., McRory, J.E., 2000, The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr.Rev. 21: 619–70.

    Article  PubMed  CAS  Google Scholar 

  30. Drucker, D.J., Shi, Q., Crivici, A., et al., 1997, Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat.Biotechnol. 15: 673–7.

    Article  PubMed  CAS  Google Scholar 

  31. Frohman, L.A., Jansson, J.O., 1986, Growth hormone-releasing hormone. Endocr.Rev. 7: 223–53.

    Article  PubMed  CAS  Google Scholar 

  32. Brown, J.C., Dahl, M., Kwauk, S., et al., 1981, Actions of GIP. Peptides 1981; 2: 241–5.

    Article  PubMed  CAS  Google Scholar 

  33. Drucker, D.J., 2002, Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122: 531–44.

    PubMed  CAS  Google Scholar 

  34. Hinke, S.A., Pospisilik, J.A., Demuth, H.U., et al., 2000, Dipeptidyl peptidase IV (DPIV/CD26) degradation of glucagon. Characterization of glucagon degradation products and DPIV-resistant analogs. J.Biol.Chem. 275: 3827–34.

    Article  PubMed  CAS  Google Scholar 

  35. Kieffer, T.J., McIntosh, C.H., Pederson, R.A., 1995, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585–96.

    Article  PubMed  CAS  Google Scholar 

  36. Deacon, C.F., Nauck, M.A., Meier, J., et al., 2000, Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin.Endocrinol.Metab. 85: 3575–81.

    Article  PubMed  CAS  Google Scholar 

  37. KĂĽhn-Wache, K., Manhardt, S., Rosche, F. et al., 1999, 2nd symposium on Cellular Peptidases in Immune Functions and Diseases, Magdeburg.

    Google Scholar 

  38. Nicole, P., Lins, L., Rouyer-Fessard, C., et al., 2000, Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J.Biol.Chem. 275: 24003–12.

    Article  PubMed  CAS  Google Scholar 

  39. Robberecht, P., Gourlet, P., de Neef, P., et al., 1992, Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6–38) as a potent antagonist. Eur.J.Biochem. 207: 239–46.

    Article  PubMed  CAS  Google Scholar 

  40. Yada, T., Sakurada, M., Ihida, K., et al., 1994, Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J.Biol.Chem. 269: 1290–3.

    PubMed  CAS  Google Scholar 

  41. ĽHeureux, M.C., Brubaker, P.L., 2001, Therapeutic potential of the intestinotropic hormone, glucagon-like peptide-2. Ann.Med. 33: 229–35.

    Google Scholar 

  42. McDonald, T.J., Jornvall, H., Nilsson, G., et al., 1979, Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem.Biophys.Res.Commun. 90: 227–33.

    Article  PubMed  CAS  Google Scholar 

  43. Ferris, H.A., Carroll, R.E., Lorimer, D.L., et al., 1997, Location and characterization of the human GRP receptor expressed by gastrointestinal epithelial cells. Peptides, 18: 663–72.

    Article  PubMed  CAS  Google Scholar 

  44. Xiao, D., Wang, J., Hampton, L.L., et al., 2001, The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 264: 95–103.

    Article  PubMed  CAS  Google Scholar 

  45. Horstmann, O., Nustede, R., Schmidt, W., et al., 1999, On the role of gastrin-releasing peptide in meal-stimulated exocrine pancreatic secretion. Pancreas 19: 126–32.

    PubMed  CAS  Google Scholar 

  46. Jensen, R.T., Coy, D.H., Saeed, Z.A., et al., 1988, Interaction of bombesin and related peptides with receptors on pancreatic acinar cells. Ann.NY Acad.Sci. 547: 138–49

    PubMed  CAS  Google Scholar 

  47. Karlsson, S., Sundler, F., Ahrén, B., 1998, Insulin secretion by gastrin-releasing peptide in mice: ganglionic versus direct islet effect. Am.J.Physiol. 274: E124–9.

    PubMed  CAS  Google Scholar 

  48. Roberge, J.N., Gronau, K.A., Brubaker, P.L., 1996, Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology 137: 2383–8.

    Article  PubMed  CAS  Google Scholar 

  49. Karlsson, S., Sundler, F., Ahrén, B., 2001, Direct cytoplasmic CA(2+) responses to gastrin-releasing peptide in single beta cells. Biochem.Biophys.Res.Commun. 280: 610–4.

    Article  PubMed  CAS  Google Scholar 

  50. Persson, K., Gingerich, R.L., Nayak, S., et al., 2000, Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. Am.J.Physiol.Endocrinol.Metab. 279: E956–62.

    PubMed  CAS  Google Scholar 

  51. Clive, S., Jodrell, D., Webb, D., 2001, Gastrin-releasing peptide is a potent vasodilator in humans. Clin.Pharmacol.Ther. 69: 252–9.

    Article  PubMed  CAS  Google Scholar 

  52. Heimbrook, D.C., Boyer, M.E., Garsky, V.M., et al., 1988, Minimal ligand analysis of gastrin releasing peptide. Receptor binding and mitogenesis. J.Biol.Chem. 263: 7016–9.

    PubMed  CAS  Google Scholar 

  53. Zlotnik, A., Yoshie, O., 2000, Chemokines: a new classification system and their role in immunity. Immunity 12: 121–7.

    Article  PubMed  CAS  Google Scholar 

  54. Noso, N., Sticherling, M., Bartels, J., et al., 1996, Identification of an N-terminally truncated form of the chemokine RANTES and granulocyte-macrophage colonystimulating factor as major eosinophil attractants released by cytokine-stimulated dermal fibroblasts. J.Immunol 156: 1946–53.

    PubMed  CAS  Google Scholar 

  55. Struyf, S., De Meester, I., Scharpé, S, et al., 1998, Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur.J.Immunol. 28: 1262–71.

    PubMed  CAS  Google Scholar 

  56. Proost, P., De Meester, I., Schols, D., et al., 1998, Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-l-infection. J.Biol.Chem. 273: 7222–7.

    Article  PubMed  CAS  Google Scholar 

  57. Menten, P., Struyf, S., Schutyser, E., et al., 1999, The LD78beta isoform of MlP-l alpha is the most potent CCR5 agonist and HIV-l-inhibiting chemokine. J.Clin.lnvest. 104: R1–5.

    CAS  Google Scholar 

  58. Proost, P., Menten, P., Struyf, S., et al., 2000, Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 96: 1674–80.

    PubMed  CAS  Google Scholar 

  59. Oravecz, T., Pall, M., Roderiquez, G., et al., 1997, Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J.Exp.Med. 186: 1865–72.

    Article  PubMed  CAS  Google Scholar 

  60. Proost, P., Schutyser, E., Menten, P., et al., 2001, Aminoterminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, whilst preserving antiangiogenic properties. Blood 98: 3554–61.

    Article  PubMed  CAS  Google Scholar 

  61. Ludwig, A., Schiemann, F., Mentlein, R., et al., 2002, Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J.Leukoc.Biol. 72: 183–91.

    PubMed  CAS  Google Scholar 

  62. Delgado, M.B., Clark-Lewis, I., Loetscher, P., et al., 2001, Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. EurJ.Immunol 31: 699–707.

    Article  CAS  Google Scholar 

  63. McQuibban, G.A., Butler, G.S., Gong, J.H., et al., 2001, Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J.Biol.Chem. 276: 43503–8.

    Article  PubMed  CAS  Google Scholar 

  64. Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., et al., 2002, Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J.Biol.Chem. 277: 15677–89.

    Article  PubMed  CAS  Google Scholar 

  65. Schols, D., Proost, P., Struyf, S., et al., 1998, CD26-processed RANTES(3-68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Res. 39: 175–87.

    Article  PubMed  CAS  Google Scholar 

  66. Simmons, G., Clapham, P.R., Picard, L., et al., 1997, Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276: 276–9.

    Article  PubMed  CAS  Google Scholar 

  67. Shioda, T., Kato, H., Ohnishi, Y., et al., 1998, Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1 alpha (SDF-1 alpha) and SDF-1 beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc.Natl.Acad.Sci.USA 95: 6331–6.

    PubMed  CAS  Google Scholar 

  68. Proost, P., Struyf, S., Schols, D., et al., 1998, Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1 alpha. FEBS Lett. 432: 73–6.

    Article  PubMed  CAS  Google Scholar 

  69. Struyf, S., Menten, P., Lenaerts, J.P., et al., 2001, Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1 alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur.J.Immunol. 31: 2170–8.

    Article  PubMed  CAS  Google Scholar 

  70. Proost, P., Struyf, S., Schols, D., et al., 1999, Truncation of macrophage-derived chemokine by CD26/dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J.Biol.Chem. 274: 3988–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

De Meester, I., Lambeir, AM., Proost, P., Scharpé, S. (2004). Dipeptidyl Peptidase IV Substrates. In: Back, N., Cohen, I.R., Kritchevsky, D., Lajtha, A., Paoletti, R. (eds) Dipeptidyl Aminopeptidases in Health and Disease. Advances in Experimental Medicine and Biology, vol 524. Springer, Boston, MA. https://doi.org/10.1007/0-306-47920-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47920-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47717-1

  • Online ISBN: 978-0-306-47920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics