Skip to main content
  • 778 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.B. Delange, “Optical Heterodyne Detection”, IEEE Spectrum, Vol. 5, pp. 77–85, October 1986.

    Google Scholar 

  2. Tonguz, O.K., Kazovsky, L.G., “Theory of Direct-Detection Lightwave Receivers Using Optical Amplifiers”, IEEE Journal of Lightwave Technology, Vol., 9, No. 2, pp. 174–181, February 1991.

    Google Scholar 

  3. Cheng, “Optimal Design for Direct-Detection System With Optical Amplifiers and Dispersion Compensators”, IEEE Journal of Lightwave Technology, Vol. 11, No. 9, pp. 1495–1499, September 1993.

    Google Scholar 

  4. Cavendish, D., “Evolution of Optical Transport Technologies: From SONET/SDH to WDM”, IEEE Communications Magazine, pp. 164–172, June 2000.

    Google Scholar 

  5. Gliese, U., Nielsen, T.N., Norskov, S., Stubkjaer, K.E., “Multifunctional Fiber-Optic Microwave Links Based on Remote Heterodyne Detection”, IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 5, pp. 458–468, May 1998.

    Google Scholar 

  6. Chiou, Y., Wang, L,. “Effect of Optical Amplifier Noise on Laser Linewidth Requirements in Long Haul Optical Fiber Communication Systems With Costas PLL Receivers”, IEEE Journal of Lightwave Technology, Vol. 16, No. 10, pp. 2126–2134, October 1996.

    Google Scholar 

  7. Imajuku, W., Takada, A., “In-Line Optical Phase-Sensitive Amplifier With Pump Light Source Controlled by Optical Phase-Lock Loop”, IEEE Journal of Lightwave Technology, Vol. 17, No. 4, pp. 637–646, April 1999.

    Google Scholar 

  8. Lidoyne, O., Gallion, P., Erasme, D., “Analysis of a Homodyne Receiver Using an Injection-Locked Semiconductor Laser”, IEEE Journal of Lightwave Techniques, Vol., 9, No. 5, pp. 659–665, May 1991.

    Google Scholar 

  9. Matsuda, K., Kubo, M., Ohnaka, K., Shibata, J., “A Monolithically Integrated InGaAs/InP Photoreceiver Operating with a Single 5-V Power Supply”, IEEE Transactions on Electron Devices, Vol, 35, No. 8, pp. 1284–1288, August 1988.

    Google Scholar 

  10. Lunarid, L.M., Chandrasekhar, S., Gnauck, A.H., Burrus, C.A., Hamm, R.A., “20-Gb/s Monlithic p-I-n-/HBT Photoreceiver Module for 1.55-μm Applications”, IEEE Photonics Technology Letters, Vol. 7, No. 10, pp. 1201–1203, October 1995.

    Google Scholar 

  11. Schaub, J.D., Li, R., Csutak, S.M., Campbell, J.C., “High-Speed Monlithic Slicon Photorecievers on High Resisitivity and SOI Substrates”, IEEE Journal of Lightwave Technology, Vol. 19, No. 2, pp. 272–278, February 2001.

    Google Scholar 

  12. Qasaimeh, O., Ma, Z., Bhattacharya, P., Croke, E.T., “Monolithically Integrated Multichannel SiGe/Si p-I-n-HBT Photoreceiver Arrays”, IEEE Journal of Lightwave Technology, Vol. 18, No. 111, pp. 1548–1553, November 2000.

    Google Scholar 

  13. Guitierrez-Aitken, A.L., Yang, K., Zhang, X., Haddad, G.I., Bhattacharya,, Lunarid, L.M., “16-GHz Bandwidth InAlAs-InGaAs Monlithically Integrated p-I-n/HBT Photoreceiver”, IEEE Photonics Technology Letters, Vol. 7, No. 11, pp. 1339–1341, November 1995.

    Google Scholar 

  14. Woodward, T.K., Krishnamoorthy, A.V., “1-Gb/s Integrated Optical Detectors and Receivers in Commercial CMOS Technologies”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 2, pp. 146–156.

    Google Scholar 

  15. Bordonalli, A.C., Walton, C, Seeds, A.J., “High-Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock Loop”, Journal of Lightwave Technology, Vol. 17, No. 2, pp. 328–342, February 1999.

    Google Scholar 

  16. Motchenbacher, C.D., Connelly, J.A., Low Noise Electronic System Design, New York, NY, John Wiley and Sons, 1993.

    Google Scholar 

  17. Oliver, B.M., “Signal-to-Noise Ratios in Photoelectric Mixing” Proceedings of the IRE, pp. 1960–1961, December 1961.

    Google Scholar 

  18. Koechner, W., Solid-State Laser Engineering, Fourth Edition, New York, NY: Springer, 1999.

    Google Scholar 

  19. Ryu, S., Coherent Lightwave Communication Systems, Boston, MA: Artech House, 1995.

    Google Scholar 

  20. Gliese, U., Christensen, E.L., Stubkjaer, K.E., “Laser Linewidth Requirements and Improvements for Coherent Optical Beam Forming Networks in Satellites”, IEEE Journal of Lightwave Technology, Vol. 9, No. 6, pp. 779–790, June 1991.

    Google Scholar 

  21. Bar-David, I., Salz, J., “On Dual Optical Detection: Homodyne and Transmitted-Reference Heterodyne Reception”, IEEE Transactions on Communications, Vol. 36, No. 12, pp. 1309–1315, December 1988.

    Google Scholar 

  22. Koechner, W., Solid-State Laser Engineering, Fifth Revised and Updated Edition, New York, NY: Springer, 1999.

    Google Scholar 

  23. Cheng, W-H., Mar, A., Bowers, J.E., Huang, R.T., Su, C.B., “High-Speed 1.3 μm InGaAsP Fabry-Perot Lasers for Digital and Analog Applications”, IEEE Journal of Quantum Electronics, Vol. 29, No. 6, pp. 166–1667, June 1993.

    Google Scholar 

  24. Pezeshki, B., Zelinksi, M., Zhao, H., Agrawal, V., “40-mW 650-nm Distributed Feedback Lasers”, IEEE Photonics Technology Letters, Vol. 10, No. 1, pp. 36–38, January 1998.

    Google Scholar 

  25. Kazovsky, L.G., “A 1320 nm Experimental Optical Phase-Locked Loop”, IEEE Photonics Technology Letters, Vol. 1, No. 11, pp. 395–397, November 1989.

    Google Scholar 

  26. Takachio, N., Iwashita, K., Hata, S1, Onodera, K., Katsura, K., Kikuchi, H., “A 10 Gb/s Optical Heterodyne Detection Experiment Using a 23 GHz Bandwidth Balanced Receiver”, IEEE Transactions on Microwave Theory and Techniques, Vol., 38, No, 12, pp. 1900–1905, December 1990.

    Google Scholar 

  27. Welter, R., Standley, R.D., Gibbons, C., “Highly Sensitive Frequency Discriminator for Heterodyne Detection”, IEEE Photonics Technology Letters, Vol, 4, No. 9, pp. 1057–1059, September 1992.

    Google Scholar 

  28. Barry, J., Lee, E.A., “Performance of Coherent Optical Receivers”, Proceedings of the IEEE, Vol. 78, No. 8, pp. 1369–1394, August 1990.

    Google Scholar 

  29. Yamashita, S., Okoshi, T., “Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers”, IEEE Journal of Lightwave Technology, Vol. 12, No. 6, pp. 1029–1025, June 1994.

    Google Scholar 

  30. Grant, M.A., Michie, W.C., Fletcher, M.J., “The Performance of Optical Phase-Locked Loops in the Presence of Nonneglible Loop Propagation Delay”, IEEE Journal of Lightwave Technology, Vol. LT-5, No. 4, pp. 592–597, April 1987.

    Google Scholar 

  31. Alexander, S.B., “Design of Wide-Band Optical Heterodyne Balanced Mixer Receivers”, IEEE Journal of Lightwave Technology, Vol. LT-5, No. 4, pp. 523–537, April 1987.

    MathSciNet  Google Scholar 

  32. Bononi, A., Ghiggino, P1, Picchi, G., “Analysis of the Automatic Frequency Control in Heterodyne Optical Receivers”, IEEE Journal of Lightwave Technology, Vol. 10, No. 6, pp. 794–803, June 1992.

    Google Scholar 

  33. Adler, R., “A Study of Locking Phenomenon in Oscillators”, Proceeding of the Institute of Radio Engineers, Vol. 34, pp. 351–357, June 1946.

    Google Scholar 

  34. Petitbon, I., Gallion, P., Debarge, G., Chabran, C., “Locking Bandwidth and Relaxation Oscillations of an Injection-Locked Semiconductor Laser”, IEEE Journal of Quantum Electronics, Vol. 24, No. 2, pp. 148–154, February 1988.

    Google Scholar 

  35. Glance, B., Wilson, R.W., “Frequency-Locked Loop Circuit Providing Large Pull-in Range”, Electronics Letters, Vol. 25, No. 15, pp. 965–967, July 20, 1989.

    Google Scholar 

  36. Natali, F.D., “AFC Tracking Algorithms”, IEEE Transactions on Communications, Vol. COM-32, No. 8, pp. 935–947, August 1984.

    Google Scholar 

  37. Aguirre, S., Hinedi, S., “Two Novel Automatic Frequency Tracking Loops”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 5, p. 749–760, September 1989.

    Google Scholar 

  38. Chious, Y., Wang, L., “Effect of Optical Amplifier Noise on Laser Linewidth Requirements in Long Haul Optical Fiber Communication Systems with Costas PLL Receivers”, IEEE Journal of Lightwave Technology, Vol. 14, No. 10, p. 2126–2134, October 1996.

    Google Scholar 

  39. Gross, R. Meissner, P. Patszk, E., “Theoretical Investigation of Local Oscillator Intensity Noise in Optical Homodyne Systems”, IEEE Journal of Lightwave Technology, Vol. 6, No. 4, pp. 521–529, April 1988.

    Google Scholar 

  40. Kazovsky, L.G., “Multichannel Coherent Optical Communications Systems”, IEEE Journal of Lightwave Technology, Vol. LT-5, No. 8, pp. 1095–1102, August 1987.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Optical Phase-Locked Loops. In: Phase-Locked Loops for Wireless Communications. Springer, Boston, MA. https://doi.org/10.1007/0-306-47314-3_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47314-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7602-6

  • Online ISBN: 978-0-306-47314-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics