Skip to main content

Cardiac Dysfunction in Hematology Oncology and Hematopoietic Cell Transplant Patients

  • Chapter
  • First Online:
Critical Care of the Pediatric Immunocompromised Hematology/Oncology Patient

Abstract

Cardiac toxicity in cancer therapy and hematopoietic cell transplantation is increasingly appreciated. It is also well described in patients with chronic hemolytic anemias such as sickle cell disease. Traditional chemotherapeutic agents such as anthracyclines have a well-established history of causing cardiac complications. Newer chemotherapeutic agents have less established toxicities but likely place patients at risk for cardiac complications as well. The most frequently seen acute cardiac toxicities in the PICU include ventricular dysfunction, pulmonary hypertension, and pericardial effusions. Prompt recognition and management of these complications are imperative to achieve the best possible outcomes. The optimal screening regimen for cardiac complications has yet to be established, but there are promising new biomarkers and imaging modalities that may aid in more prompt diagnosis and intervention in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  Google Scholar 

  2. Moller TR, et al. Decreasing late mortality among five-year survivors of cancer in childhood and adolescence: a population-based study in the Nordic countries. J Clin Oncol. 2001;19(13):3173–81.

    Article  CAS  Google Scholar 

  3. Lilje C, et al. A modified noninvasive screening protocol for pulmonary hypertension in children with sickle cell disease-Who should be sent for invasive evaluation? Pediatr Blood Cancer. 2017;64(11)

    Article  Google Scholar 

  4. Health, N.I.O. Cancer Therapy Evaluation Program Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. 2018 2018]; Available from: https://ctep.cancer.gov/protocol/Development/electronic_applications/CTC.htm

  5. Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.

    Article  CAS  Google Scholar 

  6. Taunk NK, et al. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39.

    Article  Google Scholar 

  7. Nousiainen T, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251(3):228–34.

    Article  CAS  Google Scholar 

  8. Lipshultz SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.

    Article  CAS  Google Scholar 

  9. Kremer LC, et al. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001;19(1):191–6.

    Article  CAS  Google Scholar 

  10. Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28(8):1276–81.

    Article  Google Scholar 

  11. Bagnes C, Panchuk PN, Recondo G. Antineoplastic chemotherapy induced QTc prolongation. Curr Drug Saf. 2010;5(1):93–6.

    Article  CAS  Google Scholar 

  12. Pansy J, et al. Add-on-therapy with bevacizumab in children and adolescents with poor prognosis non-CNS solid tumors. Anti-Cancer Drugs. 2013;24(2):198–203.

    Article  CAS  Google Scholar 

  13. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.

    Article  CAS  Google Scholar 

  14. Quintas-Cardama A, et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol. 2007;25(25):3908–14.

    Article  CAS  Google Scholar 

  15. Trachtenberg BH, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32(3):342–53.

    Article  Google Scholar 

  16. Mulrooney DA, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  Google Scholar 

  17. Lipshultz SE, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–43.

    Article  CAS  Google Scholar 

  18. Lipshultz SE, et al. Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol. 2012;30(10):1050–7.

    Article  Google Scholar 

  19. Lipshultz SE, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119(19):3555–62.

    Article  CAS  Google Scholar 

  20. Giantris A, et al. Anthracycline-induced cardiotoxicity in children and young adults. Crit Rev Oncol Hematol. 1998;27(1):53–68.

    Article  CAS  Google Scholar 

  21. Lipshultz SE, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324(12):808–15.

    Article  CAS  Google Scholar 

  22. Maitland ML, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596–604.

    Article  CAS  Google Scholar 

  23. Ay C, et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377–82.

    Article  CAS  Google Scholar 

  24. Choueiri TK, et al. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28(13):2280–5.

    Article  CAS  Google Scholar 

  25. Nakamae H, et al. QT dispersion correlates with systolic rather than diastolic parameters in patients receiving anthracycline treatment. Intern Med. 2004;43(5):379–87.

    Article  CAS  Google Scholar 

  26. McArthur J, Duncan C, Rajapreyar P, Talano J, Tamburro R. Critical illness involving children undergoing hematopoietic cell transplantation. In: Care PC, Fuhrman BZJ, editors. Fuhrman and Zimmerman’s pediatric critical care. 5th ed. Philadelphia: Elsevier; 2017.

    Google Scholar 

  27. Kaestner M, et al. Pulmonary hypertension in the intensive care unit. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart. 2016;102(Suppl 2):ii57–66.

    Article  Google Scholar 

  28. Dandoy CE, et al. Abnormal echocardiography 7 days after stem cell transplantation may be an early indicator of thrombotic microangiopathy. Biol Blood Marrow Transplant. 2015;21(1):113–8.

    Article  Google Scholar 

  29. Desai AV, et al. Toxicities of busulfan/melphalan versus carboplatin/etoposide/melphalan for high-dose chemotherapy with stem cell rescue for high-risk neuroblastoma. Bone Marrow Transplant. 2016;51(9):1204–10.

    Article  CAS  Google Scholar 

  30. Ambrusko SJ, et al. Elevation of tricuspid regurgitant jet velocity, a marker for pulmonary hypertension in children with sickle cell disease. Pediatr Blood Cancer. 2006;47(7):907–13.

    Article  Google Scholar 

  31. Hebson C, et al. Elevated tricuspid regurgitant velocity as a marker for pulmonary hypertension in children with sickle cell disease: less prevalent and predictive than previously thought? J Pediatr Hematol Oncol. 2015;37(2):134–9.

    Article  Google Scholar 

  32. Liem RI, et al. Tricuspid regurgitant jet velocity elevation and its relationship to lung function in pediatric sickle cell disease. Pediatr Pulmonol. 2009;44(3):281–9.

    Article  Google Scholar 

  33. Das A, et al. Risk factors for thromboembolism and pulmonary artery hypertension following splenectomy in children with hereditary spherocytosis. Pediatr Blood Cancer. 2014;61(1):29–33.

    Article  Google Scholar 

  34. El-Sheikh AA, et al. Congenital dyserythropoietic anemia type I presenting as persistent pulmonary hypertension with pigeon chest deformity. Pediatr Blood Cancer. 2014;61(8):1460–2.

    Article  CAS  Google Scholar 

  35. Murdych T, Weisdorf DJ. Serious cardiac complications during bone marrow transplantation at the University of Minnesota, 1977–1997. Bone Marrow Transplant. 2001;28(3):283–7.

    Article  CAS  Google Scholar 

  36. Dandoy CE, et al. Team-based approach to identify cardiac toxicity in critically ill hematopoietic stem cell transplant recipients. Pediatr Blood Cancer. 2017;64(10)

    Article  Google Scholar 

  37. Steward CG, et al. Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol. 2004;124(1):63–71.

    Article  CAS  Google Scholar 

  38. Kasow KA, et al. Malignant infantile osteopetrosis and primary pulmonary hypertension: a new combination? Pediatr Blood Cancer. 2004;42(2):190–4.

    Article  Google Scholar 

  39. Bunte MC, et al. Pulmonary veno-occlusive disease following hematopoietic stem cell transplantation: a rare model of endothelial dysfunction. Bone Marrow Transplant. 2008;41(8):677–86.

    Article  CAS  Google Scholar 

  40. Trobaugh-Lotrario AD, et al. Pulmonary veno-occlusive disease after autologous bone marrow transplant in a child with stage IV neuroblastoma: case report and literature review. J Pediatr Hematol Oncol. 2003;25(5):405–9.

    Article  Google Scholar 

  41. Mineo G, et al. Pulmonary veno-occlusive disease: the role of CT. Radiol Med. 2014;119(9):667–73.

    Article  Google Scholar 

  42. Rowan CB, O; McArthur J. Non-infectious pulmonary complications of hematopoietic stem cell transplant. J Pediatr Intensive Care. 2014;3:133–46.

    Article  Google Scholar 

  43. Ozyoruk D, et al. Pulmonary arterial hypertension in a child with stage-IV neuroblastoma after autologous hematopoietic stem cell transplantation and review of the literature. Pediatr Transplant. 2015;19(7):E185–8.

    Article  Google Scholar 

  44. Yildirim ZK, et al. Resolution of pulmonary hypertension with low-molecular-weight heparin, steroid, and prostacyclin analogue therapy: could it be early-phase pulmonary veno-occlusive disease? Pediatr Hematol Oncol. 2011;28(6):529–34.

    Article  CAS  Google Scholar 

  45. Alioglu B, et al. Pulmonary hypertension in a child with juvenile myelomonocytic leukemia secondary to pulmonary leukemic cell infiltration. Pediatr Hematol Oncol. 2006;23(8):667–75.

    Article  Google Scholar 

  46. Zeilhofer U, et al. Pulmonary hypertension following haematopoietic stem cell transplantation for primary haemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2013;60(3):521–3.

    Article  Google Scholar 

  47. Shankar S, et al. Pulmonary hypertension complicating bone marrow transplantation for idiopathic myelofibrosis. J Pediatr Hematol Oncol. 2004;26(6):393–7.

    Article  Google Scholar 

  48. Berger RM, et al. FUTURE-2: results from an open-label, long-term safety and tolerability extension study using the pediatric FormUlation of bosenTan in pUlmonary arterial hypeRtEnsion. Int J Cardiol. 2016;202:52–8.

    Article  Google Scholar 

  49. Khandaker MH, et al. Pericardial disease: diagnosis and management. Mayo Clin Proc. 2010;85(6):572–93.

    Article  Google Scholar 

  50. Law MA, et al. Novel, long-axis in-plane ultrasound-guided pericardiocentesis for postoperative pericardial effusion drainage. Pediatr Cardiol. 2016;37(7):1328–33.

    Article  Google Scholar 

  51. Versluys AB, et al. Predictors and outcome of pericardial effusion after hematopoietic stem cell transplantation in children. Pediatr Cardiol. 2018;39(2):236–44.

    Article  CAS  Google Scholar 

  52. Neier M, et al. Pericardial effusion post-SCT in pediatric recipients with signs and/or symptoms of cardiac disease. Bone Marrow Transplant. 2011;46(4):529–38.

    Article  CAS  Google Scholar 

  53. Galderisi M, et al. Cancer therapy and cardiotoxicity: the need of serial Doppler echocardiography. Cardiovasc Ultrasound. 2007;5:4.

    Article  Google Scholar 

  54. Dhakal P, Bhatt VR. Is complement blockade an acceptable therapeutic strategy for hematopoietic cell transplant-associated thrombotic microangiopathy? Bone Marrow Transplant. 2017;52(3):352–6.

    Article  CAS  Google Scholar 

  55. Rawlinson E, Bagshaw O. Anesthesia for children with pericardial effusion: a case series. Paediatr Anaesth. 2012;22(11):1124–31.

    Article  Google Scholar 

  56. Markman TM, et al. Electrophysiological effects of anthracyclines in adult survivors of pediatric malignancy. Pediatr Blood Cancer. 2017;64(11)

    Article  Google Scholar 

  57. Nagueh SF, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321–60.

    Article  Google Scholar 

  58. Nagiub M, Nixon JV, Kontos MC. Ability of nonstrain diastolic parameters to predict doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis. Cardiol Rev. 2018;26(1):29–34.

    Article  Google Scholar 

  59. Hare JL, et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158(2):294–301.

    Article  CAS  Google Scholar 

  60. Thavendiranathan P, et al. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6(6):1080–91.

    Article  Google Scholar 

  61. Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54(5):815–24.

    Article  CAS  Google Scholar 

  62. Cardinale D, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.

    Article  CAS  Google Scholar 

  63. Mackay B, et al. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994;18(1–2):203–11.

    Article  CAS  Google Scholar 

  64. Mitani I, et al. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol. 2003;10(2):132–9.

    Article  Google Scholar 

  65. Wassmuth R, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-a pilot study. Am Heart J. 2001;141(6):1007–13.

    Article  CAS  Google Scholar 

  66. Lipshultz SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  CAS  Google Scholar 

  67. El-Shitany NA, et al. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  CAS  Google Scholar 

  68. Hudson MM, et al. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers version 3.0. 2008. Available from: http://www.survivorshipguidelines.org/pdf/LTFUGuidelines.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Ghafoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghafoor, S., James, M., Goldberg, J., McArthur, J.A. (2019). Cardiac Dysfunction in Hematology Oncology and Hematopoietic Cell Transplant Patients. In: Duncan, C., Talano, JA., McArthur, J. (eds) Critical Care of the Pediatric Immunocompromised Hematology/Oncology Patient. Springer, Cham. https://doi.org/10.1007/978-3-030-01322-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01322-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01321-9

  • Online ISBN: 978-3-030-01322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics