Skip to main content

Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin

  • Chapter
  • First Online:
Genome Integrity

Abstract

Eukaryotic cells have developed several types of cellular defense mechanisms in the face of injuries caused by a variety of genotoxic agents. Each type of DNA lesion can be recognized and processed by specialized repair pathways. Although the signaling responses to ionizing radiation (IR) and the cross-linking drug cisplatin have been extensively studied in different cell types, the mechanisms are still unclear. Following IR, the ATM-CHK2 pathway is preferentially activated, while the ATR-CHK1 seems to be the alternative pathway in response to cisplatin treatment, similarly to UV-light exposure. While NER (nucleotide excision repair) and HR (homologous recombination) seem to constitute the main repair processes for cisplatin-induced DNA-adducts, HR and NHEJ (non-homologous end-joining) are important mechanisms for radiation-induced DSB repair; in addition, IR-induced oxidative damage can be repaired by NER and BER pathways. IR and cisplatin induce cell cycle arrest in all phases, while the induction of apoptosis mainly depends on the cell type and treatment conditions. It is still unclear how these processes act in concert, in spite of a considerable body of information in the literature that has emerged in the last decade. The data regarding gene expression analyzed at transcription level associated to cellular endpoints may indicate at least some interconnection among DNA repair, cell-cycle checkpoints and apoptosis. All these studies have been carried out in normal cells, with the aim of clarifying the mechanisms leading to genomic instability and carcinogenesis, in contrast to those performed in tumor cells, which are relevant for understanding drug or IR responses towards improvement in therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    PubMed  CAS  Google Scholar 

  2. Amundson SA et al. (2000) Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res 154:342–346

    PubMed  CAS  Google Scholar 

  3. Amundson SA, Fornace AJ Jr (2001) Gene expression profiles for monitoring radiation exposure. Radiat Prot Dosimetry 97:11–16

    CAS  Google Scholar 

  4. Amundson SA et al. (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1:445–452

    PubMed  CAS  Google Scholar 

  5. Assenmacher N, Hopfner KP (2004) MRE11/RAD50/NBS1: complex activities. Chromosoma 113:157–166

    PubMed  CAS  Google Scholar 

  6. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. Embo J 23:4868–4875

    PubMed  CAS  Google Scholar 

  7. Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804

    PubMed  CAS  Google Scholar 

  8. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    PubMed  CAS  Google Scholar 

  9. Bhatia S, Sather HN, Pabustan OB, Trigg ME, Gaynon PS, Robison LL (2002) Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood 99:4257–4264

    PubMed  CAS  Google Scholar 

  10. Bohr VA, Dianov GL (1999) Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie 81:155–160

    PubMed  CAS  Google Scholar 

  11. Borch RF (1987) The platinum antitumor drugs. In: Powis G, Prough RA (eds) Metabolism and action of anticancer drugs. Taylor & Francis, London p 163–193

    Google Scholar 

  12. Brassesco MS, Camparoto ML, Tone LG, Sakamoto-Hojo ET (2004) Analysis of ETV6/ RUNX1fusions for evaluating the late effects of cancer therapy in ALL (acute lymphoblastic leukemia) cured patients. Cytogenet Genome Res 104:346–351

    PubMed  CAS  Google Scholar 

  13. Camparoto ML, Ramalho AT, Natarajan AT, Curado MP, Sakamoto-Hojo ET (2003) Translocation analysis by the FISH-painting method for retrospective dose reconstruction in individuals exposed to ionizing radiation 10 years after exposure. Mutat Res 530:1–7

    PubMed  CAS  Google Scholar 

  14. Canman CE et al. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    PubMed  CAS  Google Scholar 

  15. Cardoso RS, Espanhol AR, Passos GA, Sakamoto-Hojo ET (2002) Differential gene expression in gamma-irradiated BALB/3T3 fibroblasts under the influence of 3-aminobenzamide, an inhibitior of parp enzyme. Mutat Res 508:33–40

    PubMed  CAS  Google Scholar 

  16. Cardoso RS et al. (2005) Hybridization signatures of gamma-irradiated murine fetal thymus organ culture (FTOC) reveal modulation of genes associated with T-cell receptor V(D)J recombination and DNA repair. Mol Immunol (in Press) Available online 13 April 2005 at http://www.sciencedirect.com/science/journal/01615890

  17. Ceraline J et al. (1998) Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int J Cancer 75:432–438

    PubMed  CAS  Google Scholar 

  18. Chaubey RC, Bhilwade HN, Rajagopalan R, Bannur SV (2001) Gamma ray induced DNA damage in human and mouse leucocytes measured by SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay. Mutat Res 490:187–197

    PubMed  CAS  Google Scholar 

  19. Chaudhry MA, Chodosh LA, McKenna WG, Muschel RJ (2003) Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett 195:221–233

    CAS  Google Scholar 

  20. Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4:541–552

    PubMed  CAS  Google Scholar 

  21. Cheo DL et al. (1997) Characterization of defective nucleotide excision repair in XPC mutant mice. Mutat Res 374:1–9

    PubMed  CAS  Google Scholar 

  22. Choi BK, Choi CH, Oh HL, Kim YK (2004) Role of ERK activation in cisplatin-induced apoptosis in A172 human cells. Neurotoxicology 25:915–924

    PubMed  CAS  Google Scholar 

  23. Chun HH, Gatti RA (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3:1187–1196

    CAS  Google Scholar 

  24. Cline SD, Hanawalt PC (2003) Who's on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 4:361–372

    PubMed  CAS  Google Scholar 

  25. Cole RS, Levitan D, Sinden RR (1976) Removal of psoralen interstrand cross-links from DNA of Escherichia coli: mechanism and genetic control. J Mol Biol 103:39–59

    PubMed  CAS  Google Scholar 

  26. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24:949–961

    PubMed  CAS  Google Scholar 

  27. Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9:195–201

    CAS  Google Scholar 

  28. Cullinane C, Mazur SJ, Essigmann JM, Phillips DR, Bohr VA (1999) Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. Biochemistry 38:6204–6212

    PubMed  CAS  Google Scholar 

  29. Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30:513–528

    PubMed  CAS  Google Scholar 

  30. Dang T, Bao S, Wang XF (2005) Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chromosomal stability. Genes Cells 10:287–295

    PubMed  CAS  Google Scholar 

  31. Datta K, Shah P, Srivastava T, Mathur SG, Chattopadhyay P, Sinha S (2004) Sensitizing glioma cells to cisplatin by abrogating the p53 response antisense oligonucleotides. Cancer Gene Ther 11:525–531

    CAS  Google Scholar 

  32. De Silva IU, McHugh PJ, Clingen PH, Hartley JA (2000) Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 20:7980–7990

    PubMed  Google Scholar 

  33. Eastman A (2004) Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 91:223–231

    PubMed  CAS  Google Scholar 

  34. Esashi F et al. (2005) CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434:598–604

    PubMed  CAS  Google Scholar 

  35. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    PubMed  CAS  Google Scholar 

  36. Fan S et al. (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55:1649–1654

    PubMed  CAS  Google Scholar 

  37. Feijoo C et al. (2001) Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J Cell Biol 154:913–923

    PubMed  CAS  Google Scholar 

  38. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. American Society of Microbiology Press, Washington D.C., p 698

    Google Scholar 

  39. Gangopadhyay S, Jalali F, Reda D, Peacock J, Bristow RG, Benchimol S (2002) Expression of different mutant p53 transgenes in neuroblastoma cells leads to different cellular responses to genotoxic agents. Exp Cell Res 275:122–131

    PubMed  CAS  Google Scholar 

  40. Gatei M et al. (2000) ATM dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25:115–119

    PubMed  CAS  Google Scholar 

  41. Gordenin DA, Kunkel TA, Resnick MA (1997) Repeat expansion – all in a flap? Nat Genet 16:116–118

    PubMed  CAS  Google Scholar 

  42. Haber JE (2000) Partners and pathways repairing a double-strand break. Trends Genet 16:259–264

    PubMed  CAS  Google Scholar 

  43. Hall EJ (2000) Radiobiology for the radiologist, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  44. Han Z et al. (1995) Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol Cell Biol 15:5849–5857

    PubMed  CAS  Google Scholar 

  45. Hanawalt PC (2000) DNA repair. The bases for Cockayne syndrome. Nature 405:415–416

    PubMed  CAS  Google Scholar 

  46. Harms Ringdahl M (1998) Some aspects on radiation induced transmissible genomic instability. Mutat Res 404:27–33

    PubMed  CAS  Google Scholar 

  47. Hartwell L, Weinert T, Kadyk L, Garvik B (1994) Cell cycle checkpoints, genomic integrity, and cancer. Cold Spring Harb Symp Quant Biol 59:259–263

    PubMed  CAS  Google Scholar 

  48. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821–1828

    PubMed  CAS  Google Scholar 

  49. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    PubMed  CAS  Google Scholar 

  50. Heiger-Bernays WJ, Essigmann JM, Lippard SJ (1990) Effect of the antitumor drug cis-diamminedichloroplatinum(II) and related platinum complexes on eukaryotic DNA replication. Biochemistry 29:8461–8466

    PubMed  CAS  Google Scholar 

  51. Heinloth AN et al. (2003) Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 37:65–82

    PubMed  CAS  Google Scholar 

  52. Hirose Y, Berger MS, Pieper RO (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61:1957–1963

    PubMed  CAS  Google Scholar 

  53. Huang JC, Zamble DB, Reardon JT, Lippard SJ, Sancar A (1994) HMG domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA 91:10394–10398

    PubMed  CAS  Google Scholar 

  54. Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854

    PubMed  CAS  Google Scholar 

  55. Huggins CF, Chafin DR, Aoyagi S, Henricksen LA, Bambara RA, Hayes JJ (2002) Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell 10:1201–1211

    PubMed  CAS  Google Scholar 

  56. Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and involved in global genomic repair. Proc Natl Acad Sci USA 96:424–428

    PubMed  CAS  Google Scholar 

  57. Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847

    PubMed  CAS  Google Scholar 

  58. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96:2147–2152

    PubMed  CAS  Google Scholar 

  59. Ira G et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    PubMed  CAS  Google Scholar 

  60. Jeggo PA, Concannon P (2001) Immune diversity and genomic stability: opposite goals but similar paths. J Photochem Photobiol B 65:88–96

    PubMed  CAS  Google Scholar 

  61. Jeggo PA, Lobrich M (2005) Artemis links ATM to double strand break rejoining. Cell Cycle 4:359–362

    PubMed  CAS  Google Scholar 

  62. Jeggo P, O'Neill P (2002) The Greek Goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 1:771–777

    CAS  Google Scholar 

  63. Jeggo P, Singleton B, Beamish H, Priestley A (1999) Double strand break rejoining by the Ku-dependent mechanism of non-homologous end-joining. C R Acad Sci III 322:109–112

    CAS  Google Scholar 

  64. Jen KY, Cheung VG (2003) Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 13:2092–2100

    PubMed  CAS  Google Scholar 

  65. Johnson KL, Nath J, Pluth JM, Tucker JD (1999) The distribution of chromosome damage, non-reciprocal translocations and clonal aberrations in lymphocytes from Chernobyl clean-up workers. Mutat Res 439:77–85

    PubMed  CAS  Google Scholar 

  66. Jordan P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57:1229–1235

    PubMed  CAS  Google Scholar 

  67. Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150

    PubMed  CAS  Google Scholar 

  68. Kitahara O, Katagiri T, Tsunoda T, Harima Y, Nakamura Y (2002) Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4:295–303

    PubMed  CAS  Google Scholar 

  69. Koishi S et al. (1998) Biomarkers in long survivors of pediatric acute lymphoblastic leukemia patients: late effects of cancer chemotherapy. Mutat Res 422:213–222

    CAS  Google Scholar 

  70. Kow YW, Wallace SS, Van Houten B (1990) UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. Mutat Res 235:147–156

    PubMed  CAS  Google Scholar 

  71. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    PubMed  CAS  Google Scholar 

  72. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554

    PubMed  CAS  Google Scholar 

  73. Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85:1161–1173

    PubMed  CAS  Google Scholar 

  74. Lehnert S, Chow TY (1997) Low doses of ionizing radiation induce nuclear activity in human tumour cell lines which catalyzes homologous double-strand recombination. Radiat Environ Biophys 36:67–70

    PubMed  CAS  Google Scholar 

  75. Li L, Zou L (2005) Sensing, signaling, and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 94:298–306

    PubMed  CAS  Google Scholar 

  76. Li L, Story M, Legerski RJ (2001) Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys 49:1157–1162

    CAS  Google Scholar 

  77. Lim DS et al. (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617

    PubMed  CAS  Google Scholar 

  78. Lin JJ, Sancar A (1989) A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 28:7979–7984

    PubMed  CAS  Google Scholar 

  79. Lukas C et al. (2001) DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 61:4990–4993

    PubMed  CAS  Google Scholar 

  80. Ma J, Murphy M, O'Dwyer PJ, Berman E, Reed K, Gallo JM (2002) Biochemical changes associated with a multidrug-resistant phenotype of a human glioma cell line with temozolomide-acquired resistance. Biochem Pharmacol 63:1219–1228

    PubMed  CAS  Google Scholar 

  81. Magae J, Hoshi Y, Furukawa C, Kawakami Y, Ogata H (2003) Quantitative analysis of biological responses to ionizing radiation, including dose, irradiation time, and dose rate. Radiat Res 160:543–548

    PubMed  CAS  Google Scholar 

  82. Mamenta EL, Poma EE, Kaufmann WK, Delmastro DA, Grady HL, Chaney SG (1994) Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res 54:3500–3505

    PubMed  CAS  Google Scholar 

  83. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97:10389–10394

    PubMed  CAS  Google Scholar 

  84. Mayer C et al. (2002) DNA repair capacity after gamma-irradiation and expression profiles of DNA repair genes in resting and proliferating human peripheral blood lymphocytes. DNA Repair (Amst) 1:237–250

    CAS  Google Scholar 

  85. McGowan CH, Russell P (2004) The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16:629–633

    PubMed  CAS  Google Scholar 

  86. Momota H et al. (2003) Histone H2AX sensitizes glioma cells to genotoxic stimuli by recruiting DNA double-strand break repair proteins. Int J Oncol 23:311–315

    PubMed  CAS  Google Scholar 

  87. Mori M, Benotmane MA, Vanhove D, van Hummelen P, Hooghe-Peters EL, Desaintes C (2004) Effect of ionizing radiation on gene expression in CD4+ T lymphocytes and in Jurkat cells: unraveling novel pathways in radiation response. Cell Mol Life Sci 61:1955–1964

    PubMed  CAS  Google Scholar 

  88. Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. Embo J 19:463–471

    PubMed  CAS  Google Scholar 

  89. Mu D et al. (2000) DNA interstrand cross links induce futile repair synthesis in mammalian cell extracts. Mol Cell Biol 20:2446–2454

    PubMed  CAS  Google Scholar 

  90. Murakami MS, Strobel MC, Vande Woude GF (1995) Cell cycle regulation, oncogenes, and antineoplastic drugs. In: Mendelson J, Howley PM, Israel MA, Liotta LA (eds) The molecular basis of cancer. Saunders, Philadelphia, PA, p 574

    Google Scholar 

  91. Murray D, Rosenberg E (1996) The importance of the ERCC1/ERCC4[XPF] complex for hypoxic-cell radioresistance does not appear to derive from its participation in the nucleotide excision repair pathway. Mutat Res 364:217–226

    PubMed  CAS  Google Scholar 

  92. Natarajan AT, Darroudi F, Jha AN, Meijers M, Zdzienicka MZ (1993) Ionizing radiation induced DNA lesions which lead to chromosomal aberrations. Mutat Res 299:297–303

    PubMed  CAS  Google Scholar 

  93. Natarajan AT et al. (1998) 137Cesium-induced chromosome aberrations analyzed by fluorescence in situ hybridization: eight years follow up of the Goiania radiation accident victims. Mutat Res 400:299–312

    PubMed  CAS  Google Scholar 

  94. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    PubMed  CAS  Google Scholar 

  95. O'Connell MJ, Cimprich KA (2005) G2 damage checkpoints: what is the turn-on? J Cell Sci 118:1–6

    PubMed  Google Scholar 

  96. Offer H et al. (2002) The onset of p53-dependent DNA repair or apoptosis is determined by the level of accumulated damaged DNA. Carcinogenesis 23:1025–1032

    PubMed  CAS  Google Scholar 

  97. Oswald CB, Chaney SG, Hall IH (1990) Inhibition of DNA synthesis in P388 lymphocytic leukemia cells of BDF1 mice by cis-diamminedichloroplatinum(II) and its derivatives. J Pharm Sci 79:875–880

    PubMed  CAS  Google Scholar 

  98. Otomo T, Hishii M, Arai H, Sato K, Sasai K (2004) Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res (Tokyo) 45:53–60

    Article  CAS  Google Scholar 

  99. Painter RB, Young BR (1980) Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 77:7315–7317

    PubMed  CAS  Google Scholar 

  100. Pastwa E, Blasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908

    PubMed  CAS  Google Scholar 

  101. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    Article  PubMed  CAS  Google Scholar 

  102. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors nuclear foci after DNA damage. Curr Biol 10:886–895

    PubMed  CAS  Google Scholar 

  103. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein phosphorylation of Cdc25C on serine-216. Science 277:1501–1505

    PubMed  CAS  Google Scholar 

  104. Pestell KE, Hobbs SM, Titley JC, Kelland LR, Walton MI (2000) Effect of p53 status on sensitivity to platinum complexes in a human ovarian cancer cell line. Mol Pharmacol 57:503–511

    PubMed  CAS  Google Scholar 

  105. Pfeiffer P (1998) The mutagenic potential of DNA double-strand break repair. Toxicol Lett 96–97:119–129

    PubMed  Google Scholar 

  106. Pichierri P, Rosselli F (2004) Fanconi anemia proteins and the s phase checkpoint. Cell Cycle 3:698–700

    PubMed  CAS  Google Scholar 

  107. Pihan GA, Doxsey SJ (1999) The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol 9:289–302

    PubMed  CAS  Google Scholar 

  108. Poppenborg H, Knupfer MM, Preiss R, Wolff JE, Galla HJ (1999) Cisplatin (CDDP)-induced radiation resistance is not associated with resistance in 86HG39 and A172 malignant glioma cells. Eur J Cancer 35:1150–1154

    PubMed  CAS  Google Scholar 

  109. Preston DL et al. (1994) Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 137:S68–S97

    PubMed  CAS  Google Scholar 

  110. Qin LF, Ng IO (2002) Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 175:27–38

    CAS  Google Scholar 

  111. Quinn JE et al. (2003) BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 63:6221–6228

    PubMed  CAS  Google Scholar 

  112. Rasnick D, Duesberg PH (1999) How aneuploidy affects metabolic control and causes cancer. Biochem J 340(Pt3):621–630

    Google Scholar 

  113. Riballo E et al. (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    PubMed  CAS  Google Scholar 

  114. Rieger KE, Chu G (2004) Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 32:4786–4803

    PubMed  CAS  Google Scholar 

  115. Rosselli F, Briot D, Pichierri P (2003) The Fanconi anemia pathway and the DNA interstrand cross-links repair. Biochimie 85:1175–1184

    PubMed  CAS  Google Scholar 

  116. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    PubMed  CAS  Google Scholar 

  117. Sakamoto-Hojo ET, Natarajan AT, Curado MP (1999) Chromosome translocations in lymphocytes from individuals exposed to Cs-137 75 years after the accident in Goiania (Brazil). Radiat Prot Dosim 86:25–32

    Google Scholar 

  118. Sakamoto-Hojo ET et al. (2003) Gene expression profiles in human cells submitted to genotoxic stress. Mutat Res 544:403–413

    PubMed  CAS  Google Scholar 

  119. Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67

    PubMed  CAS  Google Scholar 

  120. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    PubMed  CAS  Google Scholar 

  121. Sanchez Y et al. (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501

    PubMed  CAS  Google Scholar 

  122. Scarpato R, Lori A, Panasiuk G, Barale R (1997) FISH analysis of translocations in lymphocytes of children exposed to the Chernobyl fallout: preferential involvement of chromosome 10. Cytogenet Cell Genet 79:153–156

    Article  PubMed  CAS  Google Scholar 

  123. Schlissel M, Constantinescu A, Morrow T, Baxter M, Peng A (1993) Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev 7:2520–2532

    PubMed  CAS  Google Scholar 

  124. Schmidt-Ullrich RK, Dent P, Grant S, Mikkelsen RB, Valerie K (2000) Signal transduction and cellular radiation responses. Radiat Res 153:245–257

    PubMed  CAS  Google Scholar 

  125. Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55

    PubMed  CAS  Google Scholar 

  126. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    PubMed  CAS  Google Scholar 

  127. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    PubMed  CAS  Google Scholar 

  128. Shiloh Y, Kastan MB (2001) ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83:209–254

    PubMed  CAS  Google Scholar 

  129. Shu HK, Kim MM, Chen P, Furman F, Julin CM, Israel MA (1998) The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc Natl Acad Sci USA 95:14453–14458

    PubMed  CAS  Google Scholar 

  130. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    PubMed  CAS  Google Scholar 

  131. Siddik Z, Mims B, Lozano G, Thai G (1998) Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res 58:698–703

    PubMed  CAS  Google Scholar 

  132. Slee EA, O'Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818

    PubMed  CAS  Google Scholar 

  133. Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    PubMed  CAS  Google Scholar 

  134. Smith LE, Nagar S, Kim GJ, Morgan WF (2003) Radiation-induced genomic instability: radiation quality and dose response. Health Phys 85:23–29

    PubMed  CAS  Google Scholar 

  135. Smith ML et al. (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    PubMed  CAS  Google Scholar 

  136. Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 23:259–268

    CAS  Google Scholar 

  137. Sorensen CS et al. (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7:195–201

    PubMed  CAS  Google Scholar 

  138. Spiro C, McMurray CT (2003) Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability. Mol Cell Biol 23:6063–6074

    PubMed  CAS  Google Scholar 

  139. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    PubMed  CAS  Google Scholar 

  140. Suzuki K, Ojima M, Kodama S, Watanabe M (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22:6988–6993

    PubMed  CAS  Google Scholar 

  141. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    PubMed  CAS  Google Scholar 

  142. Thangaraju M, Kaufmann SH, Couch FJ (2000) BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem 275:33487–33496

    PubMed  CAS  Google Scholar 

  143. Thompson DE et al. (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137:S17–S67

    PubMed  CAS  Google Scholar 

  144. Thompson LH (1996) Evidence that mammalian cells possess homologous recombinational repair pathways. Mutat Res 363:77–88

    PubMed  CAS  Google Scholar 

  145. Tlsty TD et al. (1995) Genomic instability and cancer. Mutat Res 337:1–7

    PubMed  CAS  Google Scholar 

  146. Tornaletti S, Patrick SM, Turchi JJ, Hanawalt PC (2003) Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 278:35791–35797

    PubMed  CAS  Google Scholar 

  147. Turenne GA, Paul P, Laflair L, Price BD (2001) Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene 20:5100–5110

    PubMed  CAS  Google Scholar 

  148. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    PubMed  CAS  Google Scholar 

  149. Vaisman A et al. (1999) Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. Biochemistry 38:11026–11039

    PubMed  CAS  Google Scholar 

  150. Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812

    PubMed  CAS  Google Scholar 

  151. Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nat Rev Cancer 2:594–604

    PubMed  CAS  Google Scholar 

  152. Wang H, Powell SN, Iliakis G, Wang Y (2004) ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res 64:7139–7143

    PubMed  CAS  Google Scholar 

  153. Wang H, Hu B, Liu R, Wang Y (2005) CHK1 affecting cell radiosensitivity is independent of non-homologous end joining. Cell Cycle 4:300–303

    PubMed  CAS  Google Scholar 

  154. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O'Connor PM (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88:956–965

    PubMed  CAS  Google Scholar 

  155. Wang XW et al. (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96:3706–3711

    PubMed  CAS  Google Scholar 

  156. Wilson GD (2004) Radiation and the cell cycle, revisited. Cancer Metastasis Rev 23:209–225

    CAS  Google Scholar 

  157. Wrighton KH, Prele CM, Sunters A, Yeudall WA (2004) Aberrant p53 alters DNA damage checkpoints in response to cisplatin: downregulation of CDK expression and activity. Int J Cancer 112:760–770

    PubMed  CAS  Google Scholar 

  158. Xu B, Kim S, Kastan MB (2001) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21:3445–3450

    PubMed  CAS  Google Scholar 

  159. Yacoub A, Park JS, Qiao L, Dent P, Hagan MP (2001) MAPK dependence of DNA damage repair: ionizing radiation and the induction of expression of the DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells in a MEK1/2 dependent fashion. Int J Radiat Biol 77:1067–1078

    PubMed  CAS  Google Scholar 

  160. Yamamoto K et al. (2003) Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol Cell Biol 23:5421–5430

    PubMed  CAS  Google Scholar 

  161. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ (2003) ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 24:1571–1580

    PubMed  CAS  Google Scholar 

  162. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30:285–289

    PubMed  Google Scholar 

  163. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ (2003) Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 79:759–775

    Article  PubMed  CAS  Google Scholar 

  164. Yuan SS, Chang HL, Lee EY (2003) Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(-/-) and c-Abl(-/-) cells. Mutat Res 525:85–92

    PubMed  CAS  Google Scholar 

  165. Zabkiewicz J, Clarke AR (2004) DNA damage-induced apoptosis: insights from the mouse. Biochim Biophys Acta 1705:17–25

    PubMed  CAS  Google Scholar 

  166. Zamble DB, Mu D, Reardon JT, Sancar A, Lippard SJ (1996) Repair of cisplatin DNA adducts by the mammalian excision nuclease. Biochemistry 35:10004–10013

    PubMed  CAS  Google Scholar 

  167. Zhan Q (2005) Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 569:133–143

    PubMed  CAS  Google Scholar 

  168. Zhang J et al. (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24:708–718

    PubMed  CAS  Google Scholar 

  169. Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    PubMed  CAS  Google Scholar 

  170. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    PubMed  CAS  Google Scholar 

  171. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all members and collaborators of the laboratories involved in the work on gene expression, in particular, Dr Cristina M. Junta, Dr Paula Sandrin-Garcia and Dr Renato S. Cardoso. The research Grant from FAPESP, CNPq, CAPES and FAEPA (HC-FMRP, USP) is also acknowledged. The authors also apologize to those investigators whose articles were not cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza T. Sakamoto-Hojo .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sakamoto-Hojo, E.T. et al. (2005). Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_010

Download citation

Publish with us

Policies and ethics