Skip to main content

Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

Chitosan is a marine polymer, which possesses numerous favorable properties including bioadhesivity, biodegradability and biocompatibility, which have enabled its use in drug delivery and tissue engineering. Furthermore, chitosan has been widely investigated in vitro and in vivo for its bioactive properties such as anti-inflammatory, antimicrobial, hemostatic, wound healing etc. This chapter will comprehensively detail the promising characteristics of chitosan as a biomaterial for drug delivery and tissue engineering, with regard to its safety, quality and efficacy, and review the recent advances on its applications in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlén G (2000) Bacterial infections of the oral mucosa. Periodontol 49:13–38

    Article  Google Scholar 

  2. Sankar V, Hearnden V, Hull K et al (2011) Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis 17(Suppl 1):73–84

    Article  Google Scholar 

  3. Teeuw WJ, Kosho MX, Poland DC et al (2017) Periodontitis as a possible early sign of diabetes mellitus. BMJ Open Diabetes Res Care 5:e000326. https://doi.org/10.1136/bmjdrc-2016-000326

    Article  Google Scholar 

  4. Aksungur P, Sungur A, Unal S et al (2004) Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release 98:269–279

    Article  CAS  Google Scholar 

  5. Akincibay H, Senel S, Ay ZY (2007) Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Mater Res B Appl Biomater 80:290–296

    Article  CAS  Google Scholar 

  6. Morales JO, McConville JT (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77:187–199

    Article  CAS  Google Scholar 

  7. Boateng JS, Matthews KH, Auffret AD et al (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Dev Ind Pharm 38:47–54

    Article  CAS  Google Scholar 

  8. Dott C, Tyagi C, Tomar LK et al (2013) A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomater. https://doi.org/10.1155/2013/924947

    Article  CAS  Google Scholar 

  9. Nguyen S, Hiorth M (2015) Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 6:595–608

    Article  CAS  Google Scholar 

  10. Rathbone M, Pather I, Şenel S (2015) Overview of oral mucosal delivery. In: Rathbone M, Senel S, Pather I (eds) Oral mucosal drug delivery and therapy. Advances in delivery science and technology. Springer, Boston, pp 17–29

    Chapter  Google Scholar 

  11. Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503

    Article  Google Scholar 

  12. Moioli EK, Clark PA, Xin X et al (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59:308–324

    Article  CAS  Google Scholar 

  13. Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466

    Article  CAS  Google Scholar 

  14. Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255

    Article  CAS  Google Scholar 

  15. Zhang L, Morsi Y, Wang Y et al (2013) Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev 49:14–26

    Article  Google Scholar 

  16. Sammartino G, Dohan Ehrenfest DM, Shibli JA et al (2016) Tissue engineering and dental implantology: biomaterials, new technologies, and stem cells. Biomed Res Int 2016:5713168. https://doi.org/10.1155/2016/5713168

    Article  CAS  Google Scholar 

  17. Botelho J, Cavacas MA, Machado V et al (2017) Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 49:644–651

    Article  Google Scholar 

  18. Murray PE (2012) Constructs and scaffolds employed to regenerate dental tissue. Dent Clin North Am 56:577–588

    Article  Google Scholar 

  19. Shimauchi H, Nemoto E, Ishihata H et al (2013) Possible functional scaffolds for periodontal regeneration. Jpn Dent Sci Rev 49:118–130

    Article  Google Scholar 

  20. Abou Neel EA, Chrzanowski W, Salih VM et al (2014) Tissue engineering in dentistry. J Dent 42:915–928

    Article  CAS  Google Scholar 

  21. Greenstein G, Polson A (1998) The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol 69:507–520

    Article  CAS  Google Scholar 

  22. Soskolne WA, Heasman PA, Stabholz A et al (1997) Sustained local delivery of chlorhexidine in the treatment of periodontitis: a multi-center study. J Periodontol 68:32–38

    Article  CAS  Google Scholar 

  23. Sander L, Frandsen EV, Arnbjerg D et al (1994) Effect of local metronidazole application on periodontal healing following guided tissue regeneration. Clinical findings. J Periodontol 65:914–920

    Article  CAS  Google Scholar 

  24. Graça MA, Watts TL, Wilson RF et al (1997) A randomized controlled trial of a 2% minocycline gel as an adjunct to non-surgical periodontal treatment, using a design with multiple matching criteria. J Clin Periodontol 24:249–253

    Article  Google Scholar 

  25. Polson AM, Garrett S, Stoller NH et al (1997) Multi-center comparative evaluation of subgingivally delivered sanguinarine and doxycycline in the treatment of periodontitis. II. Clinical results. J Periodontol 68:119–126

    Article  CAS  Google Scholar 

  26. Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289

    Article  Google Scholar 

  27. Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584

    Article  CAS  Google Scholar 

  28. Şenel S (2015) Functionalisation of marine materials for drug delivery systems. In: Kim SK (ed) Functional marine polymers. Woodhead Publishing, Cambridge, pp 109–121

    Google Scholar 

  29. Jutur PP, Nesamma AA, Shaikh KM (2016) Algae-derived marine oligosaccharides and their biological applications. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00083

  30. Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104B:1415–1421

    Article  CAS  Google Scholar 

  31. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  32. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  Google Scholar 

  33. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    Article  CAS  Google Scholar 

  34. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  Google Scholar 

  35. Halim AS, Keong LC, Zainol I et al (2012) Biocompatibility and biodegradation of chitosan and derivatives. In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, New Jersey, pp 57–73

    Chapter  Google Scholar 

  36. Sashiwa H (2014) Chemical aspects of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives: advances in drug discovery and developments. CRC Press, Florida, pp 93–111

    Google Scholar 

  37. Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A Chem Phys 53:583–612

    Article  CAS  Google Scholar 

  38. Lodhi G, Kim YS, Hwang JW et al (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int 2014:654913. https://doi.org/10.1155/2014/654913

    Article  CAS  Google Scholar 

  39. Husain S, Al-Samadani KH, Najeeb S et al (2017) Chitosan biomaterials for current and potential dental applications. Materials 10:E602. https://doi.org/10.3390/ma10060602

    Article  CAS  Google Scholar 

  40. Şenel S, Kas HS, Squier CA (2000) Application of chitosan in dental drug delivery and therapy. In: Muzzarelli RAA (ed) Chitosan per os: from dietary supplement to drug carrier. Grottammare, Atec, pp 241–256

    Google Scholar 

  41. Şenel S (2010) Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol 20:23–32

    Article  Google Scholar 

  42. Zheng LY, Zhu JAF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530

    Article  CAS  Google Scholar 

  43. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Article  CAS  Google Scholar 

  44. Akca G, Özdemir A, Öner ZG et al (2018) Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res Chem Intermed 44:4811–4825

    Article  CAS  Google Scholar 

  45. Tayel AA, Moussa S, Opwis K et al (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14

    Article  CAS  Google Scholar 

  46. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283

    Article  CAS  Google Scholar 

  47. Tarsi R, Corbin B, Pruzzo C et al (1998) Effect of low-molecular-weight chitosans on the adhesive properties of oral streptococci. Oral Microbiol Immunol 13:217–224

    Article  CAS  Google Scholar 

  48. Hayashi Y, Ohara N, Ganno T et al (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294

    Article  CAS  Google Scholar 

  49. Verkaik MJ, Busscher HJ, Jager D et al (2011) Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent 39:218–224

    Article  CAS  Google Scholar 

  50. Chen CY, Chung YC (2012) Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J Appl Oral Sci 20:620–627

    Article  CAS  Google Scholar 

  51. Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940

    Article  CAS  Google Scholar 

  52. Ikinci G, Senel S, Akincibay H et al (2002) Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 235:121–127

    Article  CAS  Google Scholar 

  53. Rossi S, Sandri G, Ferrari F et al (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm Dev Technol 8:199–208

    Article  CAS  Google Scholar 

  54. Azeran NSB, Zazali NDB, Timur SS et al (2017) Moxifloxacin loaded chitosan gel formulations for the treatment of periodontal diseases. J Polym Mater 34:157–169

    Google Scholar 

  55. Atac MA, Şenel S, Eren A et al (2005) Application of chitosan films in sulcoplasty operations. In: Struszczyk H (ed) Advances in chitin science, vol IV. Proceedings of the 6th International Conference of the European Chitin Society, Poznań, pp 270–274

    Google Scholar 

  56. Kim NR, Lee DH, Chung PH et al (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e94–100

    Article  Google Scholar 

  57. Colombo JS, Moore AN, Hartgerink JD et al (2014) Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 40:S6–S12

    Article  Google Scholar 

  58. Galler KM, Eidt A, Schmalz G (2014) Cell-free approaches for dental pulp tissue engineering. J Endod 40:S41–S45

    Article  Google Scholar 

  59. O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95

    Article  CAS  Google Scholar 

  60. Ahmed S, Annu Ali A et al (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862

    Article  CAS  Google Scholar 

  61. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R et al (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279. https://doi.org/10.1155/2015/821279

    Article  CAS  Google Scholar 

  62. Kim IY, Seo SJ, Moon HS et al (2007) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  Google Scholar 

  63. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  64. Xu Y, Xia D, Han J et al (2017) Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr Polym 177:210–216

    Article  CAS  Google Scholar 

  65. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C Mater Biol Appl 32:1711–1726

    Article  CAS  Google Scholar 

  66. Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184

    Article  CAS  Google Scholar 

  67. Elviri L, Foresti R, Bergonzi C et al (2017) Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed Mater 12:045009. https://doi.org/10.1088/1748-605X/aa7692

    Article  Google Scholar 

  68. Hatami J, Silva SG, Oliveira MB et al (2017) Multilayered films produced by layer-by-layer assembly of chitosan and alginate as a potential platform for the formation of human adipose-derived stem cell aggregates. Polymers. https://doi.org/10.3390/polym9090440

    Article  CAS  Google Scholar 

  69. Timur SS, Yüksel S, Akca G et al (2018) Mucoadhesive films and wafers for treatment of infections in the oral cavity. Int J Pharm. (accepted)

    Google Scholar 

  70. Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials, revised and expanded. CRC Press, Florida, pp 187–212

    Google Scholar 

  71. Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493

    Article  CAS  Google Scholar 

  72. Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  CAS  Google Scholar 

  73. Euroepan Pharmacopeia (2017) EDQM Council of Europe, Strasbourg, France, 9th edn. https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition

  74. United States Pharmacopeia (USP) (2018) United States Pharmacopeia 41—National Formulary 36

    Google Scholar 

  75. Yuan Y, Chesnutt BM, Haggard WO et al (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416

    Article  CAS  Google Scholar 

  76. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268

    Article  CAS  Google Scholar 

  77. Fakhry A, Schneider GB, Zaharias R et al (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079

    Article  CAS  Google Scholar 

  78. Hamilton V, Yuan YL, Rigney DA et al (2007) Bone cell attachment and growth on well-characterized chitosan films. Polym Int 56:641–647

    Article  CAS  Google Scholar 

  79. Kinane DF, Berglundh T, Lindhe J (2012) Pathogenesis of periodontitis. In: Lindhe J, Lang NP, Karring T (eds) Clinical periodontology and implant dentistry, 5th edn. Wiley-Blackwell, New Jersey, pp 285–306

    Google Scholar 

  80. Yen AH, Yelick PC (2011) Dental tissue regeneration—a mini-review. Gerontology 57:85–94

    Article  Google Scholar 

  81. Amrollahi P, Shah B, Seifi A et al (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C Mater Biol Appl 69:1383–1390

    Article  CAS  Google Scholar 

  82. Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T et al (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:2041731417752766

    Article  CAS  Google Scholar 

  83. Arancibia R, Maturana C, Silva D et al (2013) Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 92:740–745

    Article  CAS  Google Scholar 

  84. Ji Q, Deng J, Yu X et al (2013) Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr Polym 92:824–829

    Article  CAS  Google Scholar 

  85. Zang S, Dong G, Peng B et al (2014) A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym 113:240–248

    Article  CAS  Google Scholar 

  86. Hurt AP, Kotha AK, Trivedi V et al (2015) Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration. Polimeros 25:311–316

    Article  Google Scholar 

  87. Bansal M, Mittal N, Yadav SK et al (2018) Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 8:126–133

    Article  Google Scholar 

  88. Gjoseva S, Geskovski N, Sazdovska SD et al (2018) Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 186:260–272

    Article  CAS  Google Scholar 

  89. Özdoğan AI, İlarslan YD, Kösemehmetoğlu K et al (2018) In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm 550:470–476

    Article  CAS  Google Scholar 

  90. Gottlow J, Nyman S, Karring T et al (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503

    Article  CAS  Google Scholar 

  91. Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 54:73–92

    Article  Google Scholar 

  92. The American Academy of Periodontology (2001) Glossary of periodontal terms, 4th edn

    Google Scholar 

  93. Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:19–25

    CAS  Google Scholar 

  94. Wang JL, Wang LN, Zhou ZY et al (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers 8:115. https://doi.org/10.3390/polym8040115

    Article  CAS  Google Scholar 

  95. Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720

    Article  CAS  Google Scholar 

  96. Zhang Y, Wang Y, Shi B et al (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522

    Article  CAS  Google Scholar 

  97. Budiraharjo R, Neoh KG, Kang ET et al (2010) Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. Int Endod J 43:930–939

    Article  CAS  Google Scholar 

  98. Coimbra P, Alves P, Valente TA et al (2011) Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. Int J Biol Macromol 49:573–579

    Article  CAS  Google Scholar 

  99. Horst OV, Chavez MG, Jheon AH et al (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 56:495–520

    Article  Google Scholar 

  100. Pandey AR, Singh US, Momin M et al (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24:125. https://doi.org/10.1007/s10965-017-1286-4

    Article  CAS  Google Scholar 

  101. Covarrubias C, Cádiz M, Maureira M et al (2018) Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 32:1155–1163

    Article  CAS  Google Scholar 

  102. Soares DG, Anovazzi G, Bordini EAF et al (2018) Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration. J Endod 44:971–976.e1

    Article  Google Scholar 

  103. Varoni EM, Vijayakumar S, Canciani E et al (2018) Chitosan-based trilayer scaffold for multitissue periodontal regeneration. J Dent Res 97:303–311

    Article  CAS  Google Scholar 

  104. Zeeshan R, Mutahir Z, Iqbal H et al (2018) Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym 193:9–18

    Article  CAS  Google Scholar 

  105. Duruel T, Çakmak AS, Akman A et al (2017) Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. Int J Biol Macromol 104A:232–241

    Article  CAS  Google Scholar 

  106. Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G et al (2017) Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 69:617–630

    Article  CAS  Google Scholar 

  107. Soares DG, Rosseto HL, Scheffel DS et al (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21:2827–2839

    Article  Google Scholar 

  108. Miranda DG, Malmonge SM, Campos DM et al (2016) A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 104:1691–1702

    Article  CAS  Google Scholar 

  109. Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411

    Article  CAS  Google Scholar 

  110. Jiang W, Li L, Zhang D et al (2015) Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 25:240–252

    Article  CAS  Google Scholar 

  111. Nivedhitha Sundaram M, Sowmya S, Deepthi S et al (2016) Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater 104:761–770

    Article  CAS  Google Scholar 

  112. Hashemi-Beni B, Khoroushi M, Foroughi MR et al (2018) Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dent Res J 15:136–145

    Article  Google Scholar 

  113. Lee D, Lee SJ, Moon JH et al (2018) Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem 66:196–202

    Article  CAS  Google Scholar 

  114. Su H, Liu KY, Karydis A et al (2016) In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomed Mater 12:015003

    Article  Google Scholar 

  115. Lotfi G, Shokrgozar MA, Mofid R et al (2016) Biological evaluation (in vitro and in vivo) of bilayered collagenous coated (nano electrospun and solid wall) chitosan membrane for periodontal guided bone regeneration. Ann Biomed Eng 44:2132–2144

    Article  Google Scholar 

  116. Farooq A, Yar M, Khan AS et al (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 56:104–113

    Article  CAS  Google Scholar 

  117. Shen R, Xu W, Xue Y et al (2018) The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1458233

    Article  CAS  Google Scholar 

  118. Park SJ, Li Z, Hwang IN et al (2013) Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 39:1001–1007

    Article  Google Scholar 

  119. Amir LR, Suniarti DF, Utami S et al (2014) Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res 358:407–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Şenel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şenel, S., Aksoy, E.A., Akca, G. (2019). Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_8

Download citation

Publish with us

Policies and ethics