Skip to main content

Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

The use of advance technology allocated a scientific community with significant development in the field of tissue engineering and medical sciences. Developing a biomaterial to replace the diseased or damaged tissue is a paramount importance for an effective regenerative approach, so that the original structural and functional status is recovered. Due to its rich biodiversity, marine environment yields immense potential and offer various organisms from which promising natural substances can be isolated to mimic the tissue ECM (extracellular matrix) in the body. Findings by various researchers both in vitro and in vivo also support the opinion that the derived structures from aquatic origin have optimistic potential for biomedical application. In this chapter, we shall discuss some of the marine-derived biomaterials which can be employed for various tissue engineering approaches. Marine ecosystem nourished a wide variety of creatures like corals, seashells and sea urchins from which various biopolymers can be extracted. These bio-molecules offer a new dimension for clinical application in dentistry, oral and maxillofacial surgery, wound healing, local drug delivery system, cartilage and bone tissue engineering. As the substances derived from marine origin are organic in nature, they are usually non-toxic, biocompatible, bioactive and well tolerated by the body, which boost their efficacy for tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  2. Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720

    Article  CAS  Google Scholar 

  3. Service RF (2000) Tissue engineers build new bone. Science 289:1498–1500

    Article  Google Scholar 

  4. Cortesini R (2005) Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol 15:81–89

    CAS  Google Scholar 

  5. Dash M, Samal SK, Douglas TEL et al (2017) Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 11:1500–1513

    Article  CAS  Google Scholar 

  6. Chabaud S, Rousseau A, Marcoux TL et al (2017) Inexpensive production of near-native engineered stromas. J Tissue Eng Regen Med 11:1377–1389

    Article  CAS  Google Scholar 

  7. Mesallati T, Buckley CT, Kelly DJ (2017) Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. J Tissue Eng Regen Med 11:1343–1353

    Article  CAS  Google Scholar 

  8. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci. https://doi.org/10.5402/2012/983062

    Article  CAS  Google Scholar 

  9. Wojtowicz AM, Shekaran A, Oest ME et al (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582

    Article  CAS  Google Scholar 

  10. Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:86

    Article  CAS  Google Scholar 

  11. Jones JR (2015) Reprint of: review of bioactive glass: From Hench to hybrids. Acta Biomater 23:S53–S82

    Article  Google Scholar 

  12. Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977

    Article  CAS  Google Scholar 

  13. Zilinskas RA, Colwell RR, Lipton DW et al (1995) The global challenge of marine biotechnology: a status report on the United States, Japan, Australia and Norway. Maryland Sea Grant College, Maryland

    Google Scholar 

  14. Weber P (1993) Abandoned seas: reversing the decline of the oceans, WorldWatch Paper No. 116. Worldwatch Institute, Washington

    Google Scholar 

  15. Attaway DH, Zaborsky OR (eds) (1993) Marine biotechnology pharmaceuticals and bioactive natural products, vol 1. Springer, Heidelberg

    Google Scholar 

  16. Powers DA (1995) New frontiers in marine biotechnology: opportunities for the 21st century. In: Lundin CG, Zilinskas RA (eds) Marine biotechnology in the Asian Pacific region. The Word Bank and SIDA, Stockholm, p 17

    Google Scholar 

  17. Thakur NL, Thakur AL (2006) Marine biotechnology: an overview. Ind J Biotechnol 5:263–268

    CAS  Google Scholar 

  18. Clarke SA, Walsh P, Maggs CA et al (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29:610–617

    Article  CAS  Google Scholar 

  19. Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9:967–983

    Article  CAS  Google Scholar 

  20. Svetličić V, Zutić V, Radić TM et al (2011) Polymer networks produced by marine diatoms in the northern Adriatic Sea. Mar Drugs 9:666–679

    Article  CAS  Google Scholar 

  21. Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260

    Article  Google Scholar 

  22. Venkatesan J, Kim SK (eds) (2013) Marine biomaterials: characterization, isolation, and applications. CRC Press, Florida

    Google Scholar 

  23. Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679

    Article  CAS  Google Scholar 

  24. Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine-environment. Biochem Syst Ecol 19:347–356

    Article  CAS  Google Scholar 

  25. Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologica 470:63–96

    Article  CAS  Google Scholar 

  26. Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotech 44:83–87

    CAS  Google Scholar 

  27. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  28. Madhavan P, Ramachandran Nair KG (1974) Utilization of prawn waste: isolation of chitin and its conversion to chitosan. Fishery Technol 11:50–53

    CAS  Google Scholar 

  29. Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res 49:93–135

    Article  CAS  Google Scholar 

  30. Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  Google Scholar 

  31. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  32. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  33. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  Google Scholar 

  34. Stanley GD (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225

    Article  Google Scholar 

  35. Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250

    Article  CAS  Google Scholar 

  36. Laine J, Labady M, Albornoz A et al (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59:1522–1525

    Article  CAS  Google Scholar 

  37. Bin MI, Dara A, Sontang M et al (2013) Fish bone waste utilization program for hydroxyapatite products: a case study of knowledge transfer from a university to coastal communities. J Environ Res Dev 7:1–8

    Article  Google Scholar 

  38. Venkatesan J, Qian ZJ, Ryu B et al (2011) A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed Mater 6:035003. https://doi.org/10.1088/1748-6041/6/3/035003

    Article  CAS  Google Scholar 

  39. Damien E, Revell PA (2004) Coralline hydroxyapatite bone graft substitute: a review of experimental studies and biomedical applications. J Appl Biomater Biomech 2:65–73

    CAS  Google Scholar 

  40. Holmes R, Mooney V, Bucholz R et al (1984) A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop Relat Res 188:252–262

    CAS  Google Scholar 

  41. Best SM, Porter AE, Thian ES et al (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327

    Article  CAS  Google Scholar 

  42. Chesnutt BM, Viano AM, Yuan Y et al (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 88:491–502

    Article  CAS  Google Scholar 

  43. Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108:4754–4783

    Article  CAS  Google Scholar 

  44. Kim SK, Mendis E (2006) Bioactive compounds from marine processing byproducts—a review. Food Res Int 39:383–393

    Article  CAS  Google Scholar 

  45. Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113

    Article  CAS  Google Scholar 

  46. Nagai T, Worawattanamateekul W, Suzuki N et al (2000) Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilemaasamushi). Food Chem 70:205–208

    Article  CAS  Google Scholar 

  47. Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281

    Article  CAS  Google Scholar 

  48. Song E, Yeon Kim S, Chun T et al (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27:2951–2961

    Article  CAS  Google Scholar 

  49. Nagai T, Suzuki N (2002) Preparation and partial characterization of collagen from paper nautilus (Argonautaargo, Linnaeus) outer skin. Food Chem 76:149–153

    Article  CAS  Google Scholar 

  50. Sikorski ZE, Borderias JA (1994) Collagen in the muscles and skin of marine animals. In: Sikorski ZE, Pan BS, Shahidi F (eds) Seafood proteins. Springer, New York, pp 58–70

    Chapter  Google Scholar 

  51. Nagai T, Yamashita E, Taniguchi K et al (2001) Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem 72:425–429

    Article  CAS  Google Scholar 

  52. Kolodziejska I, Sikorski ZE, Niecikowska C (1999) Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chem 66:153–157

    Article  CAS  Google Scholar 

  53. Pallela R, Bojja S, Janapala VR (2011) Biochemical and biophysical characterization of collagens of marine sponge, Irciniafusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 49:85–92

    Article  CAS  Google Scholar 

  54. Schröder HC, Wang X, Tremel W et al (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    Article  CAS  Google Scholar 

  55. Müller WE, Wang X, Kropf K et al (2008) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351

    Article  CAS  Google Scholar 

  56. Aizenberg J, Weaver JC, Thanawala MS (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  CAS  Google Scholar 

  57. Sarikaya M, Fong H, Sunderland N et al (2001) Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J Mater Res 16:1420–1428

    Article  CAS  Google Scholar 

  58. Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636

    Article  CAS  Google Scholar 

  59. Fitton JH (2011) Therapies from fucoidan; multifunctional marine polymers. Mar Drugs 9:1731–1760

    Article  CAS  Google Scholar 

  60. Irhimeh MR, Fitton JH, Lowenthal RM (2007) Fucoidan ingestion increases the expression of CXCR55 on human CD34 + cells. Exp Hematol 35:989–994

    Article  CAS  Google Scholar 

  61. Itoh H, Noda H, Amano H et al (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 13:2045–2052

    CAS  Google Scholar 

  62. Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  CAS  Google Scholar 

  63. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28

    Article  CAS  Google Scholar 

  64. Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 carrageenan extracts I. Structure analysis. Food Hydrocoll 15:441–452

    Article  CAS  Google Scholar 

  65. Hilliou L, Larotonda FD, Abreu P et al (2006) Effect of extraction parameters on the chemical structure and gel properties of kappa/iota-hybrid carrageenans obtained from Mastocarpusstellatus. Biomol Eng 23:201–208

    Article  CAS  Google Scholar 

  66. Zierer MS, Mourão PA (2000) A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr Res 328:209–216

    Article  CAS  Google Scholar 

  67. Tingbø MG, Kolset SO, Ofstad R et al (2005) Sulfated glycosaminoglycans in the extracellular matrix of muscle tissue in Atlantic cod (Gadus morhua) and Spotted wolffish (Anarhichas minor). Comp Biochem Physiol Part B: Biochem Mol Biol 140:349–357

    Article  CAS  Google Scholar 

  68. Im AR, Sim JS, Park Y et al (2009) Isolation and characterization of chondroitin sulfates from the by-products of marine organisms. Food Sci Biotechnol 18:872–877

    CAS  Google Scholar 

  69. Lamari FN, Theocharis AD, Asimakopoulou AP et al (2006) Metabolism and biochemical/physiological roles of chondroitin sulfates: analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed Chromatogr 20:539–550

    Article  CAS  Google Scholar 

  70. Luo XM, Fosmire GJ, Leach RM Jr (2002) Chicken keel cartilage as a source of chondroitin sulfate. Poult Sci 81:1086–1089

    Article  CAS  Google Scholar 

  71. Michelacci YM, Dietrich CP (1986) Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains. Int J Biol Macromol 8:108–113

    Article  CAS  Google Scholar 

  72. Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264

    Article  CAS  Google Scholar 

  73. Lignot B, Lahogue V, Bourseau P (2003) Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J Biotechnol 103:281–284

    Article  CAS  Google Scholar 

  74. Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr et al (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28:169–176

    Article  CAS  Google Scholar 

  75. Majima M, Takagaki K, Sudo S et al (2001) Effect of proteoglycan on experimental colitis. In: Endo M, Harata S, Saito Y et al (eds) New developments in glycomedicine. 4th Hirosaki International Forum of Medical Science, Kirosaki, October 2000. International congress series, vol 1223. Elsevier Science, Netherlands, pp 221–224

    Article  CAS  Google Scholar 

  76. Kitagawa H, Tanaka Y, Yamada S et al (1997) A novel pentasaccharide sequence GlcA(3-sulfate)(β1–3)GalNAc(4-sulfate)(β1–4)(Fucα1–3)GlcA(β1–3)GalNAc(4-sulfate) in the oligosaccharides isolated from king crab cartilage chondroitin sulfate K and its differential susceptibility to chondroitinases and hyaluronidase. Biochemistry 36:3998–4008

    Article  CAS  Google Scholar 

  77. Vieira RP, Mourão PA (1988) Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. J Biol Chem 263:18176–18183

    CAS  Google Scholar 

  78. Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology 107:261–273

    Article  Google Scholar 

  79. Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342

    Article  CAS  Google Scholar 

  80. Laurent TC, Laurent UB, Fraser JR (1995) Functions of hyaluronan. Ann Rheum Dis 54:429–432

    Article  CAS  Google Scholar 

  81. Braye F, Irigaray JL, Jallot E et al (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17:1345–1350

    Article  CAS  Google Scholar 

  82. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222

    Article  CAS  Google Scholar 

  83. Hosoi K, Hashida T, Takahashi H et al (1996) New processing technique for hydroxyapatite ceramics by the hydrothermal hot-pressing method. J Am Ceram Soc 79:2771–2774

    Article  CAS  Google Scholar 

  84. Hu J, Russell JJ, Ben-Nissan B et al (2001) Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J Mater Sci Lett 20:85–87

    Article  CAS  Google Scholar 

  85. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  CAS  Google Scholar 

  86. Kolambkar YM, Dupont KM, Boerckel JD et al (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74

    Article  CAS  Google Scholar 

  87. Krebs MD, Salter E, Chen E et al (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138

    Google Scholar 

  88. Xia Y, Mei F, Duan Y et al (2012) Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold. J Biomed Mater Res A 100:1044–1050

    Article  CAS  Google Scholar 

  89. Barralet JE, Wang L, Lawson M et al (2005) Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci Mater Med 16:515–519

    Article  CAS  Google Scholar 

  90. Valente JFA, Valente TAM, Alves P et al (2012) Alginate based scaffolds for bone tissue engineering. Mat Sci Eng C-Mater 32:2596–2603

    Article  CAS  Google Scholar 

  91. Lin HR, Yeh YJ (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B Appl Biomater 71:52–65

    Article  CAS  Google Scholar 

  92. Turco G, Marsich E, Bellomo F et al (2009) Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10:1575–1583

    Article  CAS  Google Scholar 

  93. Duarte ARC, Mano JF, Reis RL (2010) Preparation of chitosan scaffolds for tissue engineering using supercritical fluid technology. In: Rosa LG, Margarido F (eds) 5th international materials symposium/14th conference of the SOCIEDADE-Portuguesa-de-Materiais, Lisbon, April 2009. Advanced materials forum V, pt 1 and 2, vol 636–637. Materials Science Forum, Zurich, pp 22–25

    Article  CAS  Google Scholar 

  94. Ho MH, Kuo PY, Hsieh HJ et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138

    Article  CAS  Google Scholar 

  95. Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    Article  CAS  Google Scholar 

  96. Changotade SI, Korb G, Bassil J et al (2008) Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87:666–675

    Article  CAS  Google Scholar 

  97. Jin G, Kim GH (2011) Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718

    Article  CAS  Google Scholar 

  98. Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90:181–188

    Article  CAS  Google Scholar 

  99. Schröder HC, Wang XH, Wiens M et al (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206

    Article  CAS  Google Scholar 

  100. Wiens M, Wang X, Schlossmacher U et al (2010) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    Article  CAS  Google Scholar 

  101. Wang S, Wang X, Draenert FG et al (2014) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304

    Article  CAS  Google Scholar 

  102. Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058

    Article  CAS  Google Scholar 

  103. Danilchenko SN, Kalinkevich OV, Pogorelov MV et al (2009) Chitosan-hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126

    Article  CAS  Google Scholar 

  104. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  CAS  Google Scholar 

  105. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  Google Scholar 

  106. Nazeer RA, Suganya US (2014) Porous scaffolds of gelatin from the marine gastropod Ficus variegate with commercial cross linkers for biomedical applications. Food Sci Biotechnol 23:327–335

    Article  CAS  Google Scholar 

  107. Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12:300–316

    Article  CAS  Google Scholar 

  108. Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166

    Article  CAS  Google Scholar 

  109. Green DW (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010. https://doi.org/10.1088/1748-6041/3/3/034010

    Article  CAS  Google Scholar 

  110. Langer R (2009) Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 21:3235–3236

    Article  CAS  Google Scholar 

  111. Aam BB, Heggset EB, Norberg AL et al (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    Article  CAS  Google Scholar 

  112. Lieder R, Thormodsson F, Ng CH et al (2012) Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680

    Article  CAS  Google Scholar 

  113. Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9:1510–1533

    Article  CAS  Google Scholar 

  114. Wei X, Chen W, Mao F et al (2013) Effect of chitooligosaccharides on mice hematopoietic stem/progenitor cells. Int J Biol Macromol 54:71–75

    Article  CAS  Google Scholar 

  115. Bermueller C, Schwarz S, Elsaesser AF et al (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214

    Article  CAS  Google Scholar 

  116. Ainola M, Tomaszewski W, Ostrowska B et al (2016) A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair. J Biomater Appl 30:873–885

    Article  CAS  Google Scholar 

  117. Hamilton MF, Otte AD, Gregory RL et al (2015) Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 103:1560–1568

    Article  CAS  Google Scholar 

  118. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  119. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264–272

    Google Scholar 

  120. Tavaria FK, Costa EM, Pina Vaz I et al (2013) A quitosanacomo biomaterial odontológico: estado da arte (Chitosan as a dental biomaterial: state of the art). Rev Bras Eng Bioméd 29:110–120

    Article  CAS  Google Scholar 

  121. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  122. Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067

    Article  CAS  Google Scholar 

  123. Chávez de Paz LE, Resin A, Howard KA et al (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77:3892–3895

    Article  CAS  Google Scholar 

  124. Leong KF, Chua CK, Sudarmadji N et al (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152

    Article  CAS  Google Scholar 

  125. Norowski PA, Courtney HS, Babu J et al (2011) Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study. Implant Dent 20:56–67

    Article  Google Scholar 

  126. Ganss C, Lussi A, Grunau O et al (2011) Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion. Caries Res 45:581–589

    Article  CAS  Google Scholar 

  127. Ganss C, Klimek J, Schlueter N (2014) Erosion/abrasion-preventing potential of NaF and F/Sn/chitosan toothpastes in dentine and impact of the organic matrix. Caries Res 48:163–169

    Article  CAS  Google Scholar 

  128. Schlueter N, Klimek J, Ganss C (2013) Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss. Caries Res 47:574–581

    Article  CAS  Google Scholar 

  129. Ruan Q, Siddiqah N, Li X et al (2014) Amelogenin-chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect Tissue Res 55:150–154

    Article  CAS  Google Scholar 

  130. Zhang YF, Cheng XR, Chen Y et al (2007) Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349

    Article  CAS  Google Scholar 

  131. Hollister SJ, Lin CY, Saito E et al (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173

    Article  CAS  Google Scholar 

  132. Zhang X, Vecchio KS (2013) Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front Mater Sci 7:103–117

    Article  CAS  Google Scholar 

  133. Lin CC, Ritch R, Lin SM et al (2010) A new fish scale-derived scaffold for corneal regeneration. Eur Cell Mater 19:50–57

    Article  Google Scholar 

  134. Hayashi Y, Yamada S, YanagiGuchi K et al (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. Adv Food Nutr Res 65:107–120

    Article  Google Scholar 

  135. Soost F (1996) Biocoral—an alternative bone substitute. Chirurg 67:1193–1196

    Article  CAS  Google Scholar 

  136. Soost F, Reisshauer B, Herrmann A et al (1998) Natural coral calcium carbonate as alternative substitute in bone defects of the skull. Mund Kiefer Gesichtschir 2:96–100

    Article  CAS  Google Scholar 

  137. Lee CY, Prasad HS, Suzuki JB et al (2011) The correlation of bone mineral density and histologic data in the early grafted maxillary sinus: a preliminary report. Implant Dent 20:202–214

    Article  Google Scholar 

  138. Zeng RS (1991) The use of coral as a substitute for maxillofacial bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi 26(345–7):389–390

    Google Scholar 

  139. Senni K, Gueniche F, Changotade S et al (2013) Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar Drugs 11:1351–1369

    Article  CAS  Google Scholar 

  140. Gross-Aviv T, DiCarlo BB, French MM et al (2008) A study of crystalline biomaterials for articular cartilage bioengineering. Mat Sci Eng C-Bio S 28:1388–1400

    Article  CAS  Google Scholar 

  141. Hu J, Fraser R, Russell JJ et al (2000) Australian coral as a biomaterial: characteristics. J Mater Sci Technol 16:591–595

    CAS  Google Scholar 

  142. Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259

    Article  CAS  Google Scholar 

  143. Demers C, Hamdy CR, Corsi K et al (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35

    Google Scholar 

  144. Tan H, Wu J, Lao L et al (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337

    Article  CAS  Google Scholar 

  145. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  CAS  Google Scholar 

  146. Nge TT, Nogi M, Yano H et al (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363

    Article  CAS  Google Scholar 

  147. Tan H, Chu CR, Payne KA et al (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  148. Yamane S, Iwasaki N, Majima T et al (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619

    Article  CAS  Google Scholar 

  149. Yamane S, Iwasaki N, Kasahara Y et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 81:586–593

    Article  CAS  Google Scholar 

  150. Yang Z, Wu Y, Li C et al (2012) Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A 18:242–251

    Article  CAS  Google Scholar 

  151. Li C, Wang L, Yang Z et al (2012) A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed 23:405–424

    Article  CAS  Google Scholar 

  152. Deng J, She R, Huang W et al (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med 24:2037–2046

    Article  CAS  Google Scholar 

  153. Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2855–2863

    Article  CAS  Google Scholar 

  154. Bhattacharyya S, Liu H, Zhang Z et al (2010) Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J Nutr Biochem 21:906–913

    Article  CAS  Google Scholar 

  155. Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289

    Article  Google Scholar 

  156. Holland TA, Mikos AG (2003) Advances in drug delivery for articular cartilage. J Control Release 86:1–14

    Article  CAS  Google Scholar 

  157. Tuli R, Tuli S, Nandi S et al (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wntsignaling cross-talk. J Biol Chem 278:41227–41236

    Article  CAS  Google Scholar 

  158. Park H, Temenoff JS, Holland TA et al (2005) Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103

    Article  CAS  Google Scholar 

  159. Ferraro V, Cruz IB, Jorge RF et al (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233

    Article  Google Scholar 

  160. Yeo M, Jung WK, Kim G (2012) Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/beta-TCP composite scaffolds for bone tissue regeneration. J Mater Chem 22:3568–3577

    Article  CAS  Google Scholar 

  161. Yang C, Hillas PJ, Báez JA et al (2004) The application of recombinant human collagen in tissue engineering. Bio Drugs 18:103–119

    CAS  Google Scholar 

  162. Hoyer B, Bernhardt A, Lode A et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10:883–892

    Article  CAS  Google Scholar 

  163. Matsumoto Y, Ikeda K, Yamaya Y et al (2011) The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineering. Biomed Res 32:29–36

    Article  CAS  Google Scholar 

  164. Rabbany SY, Pastore J, Yamamoto M et al (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408

    Article  Google Scholar 

  165. Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521

    Article  Google Scholar 

  166. Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  Google Scholar 

  167. Balakrishnan B, Mohanty M, Umashankar PR et al (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  Google Scholar 

  168. Přichystalová H, Almonasy N, Abdel-Mohsen AM et al (2014) Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int J Biol Macromol 65:234–240

    Article  CAS  Google Scholar 

  169. Lou MM, Zhu B, Muhammad I et al (2011) Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderiaseminalis. Carbohydr Res 346:1294–1301

    Article  CAS  Google Scholar 

  170. Wang W, Lin S, Xiao Y et al (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82:190–204

    Article  CAS  Google Scholar 

  171. Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022

    Article  CAS  Google Scholar 

  172. Zheng Shu X, Liu Y, Palumbo FS et al (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348

    Article  CAS  Google Scholar 

  173. Voigt J, Driver VR (2012) Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen 20:317–331

    Article  Google Scholar 

  174. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279

    Article  CAS  Google Scholar 

  175. Sadhasivam G, Muthuvel A, Pachaiyappan A et al (2013) Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatusnarinari. Int J Biol Macromol 54:84–89

    Article  CAS  Google Scholar 

  176. Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164

    Article  CAS  Google Scholar 

  177. Sezer AD, Hatipoğlu F, Cevher E et al (2007) Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. https://doi.org/10.1208/pt0802039

    Article  Google Scholar 

  178. Navarro DA, Stortz CA (2005) Microwave-assisted alkaline modification of red seaweed galactans. Carbohyd Polym 62:187–191

    Article  CAS  Google Scholar 

  179. Pawar HV, Tetteh J, Boateng JS (2013) Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 102:102–110

    Article  CAS  Google Scholar 

  180. Boateng JS, Pawar HV, Tetteh J (2013) Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 441:181–191

    Article  CAS  Google Scholar 

  181. Fan L, Wang L, Gao S et al (2011) Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohyd Polym 86:1167–1174

    Article  CAS  Google Scholar 

  182. Olsen D, Yang C, Bodo M et al (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55:1547–1567

    Article  CAS  Google Scholar 

  183. Swatschek D, Schatton W, Müller W et al (2002) Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 54:125–133

    Article  CAS  Google Scholar 

  184. Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Article  CAS  Google Scholar 

  185. De S, Robinson D (2003) Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 89:101–112

    Article  CAS  Google Scholar 

  186. González-Rodríguez ML, Holgado MA, Sánchez-Lafuente C et al (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234

    Article  Google Scholar 

  187. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  188. Prabaharan M, Reis RL, Mano JF (2007) Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym 67:43–52

    Article  CAS  Google Scholar 

  189. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126

    Article  CAS  Google Scholar 

  190. Andrade F, Goycoolea F, Chiappetta DA et al (2011) Chitosan-grafted copolymers and chitosan-ligand conjugates as matrices for pulmonary drug delivery. Int J Carbohyd Chem. https://doi.org/10.1155/2011/865704

    Article  CAS  Google Scholar 

  191. Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648

    Article  CAS  Google Scholar 

  192. Mao S, Germershaus O, Fischer D et al (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068

    Article  CAS  Google Scholar 

  193. Mao S, Shuai X, Unger F et al (2005) Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 26:6343–6356

    Article  CAS  Google Scholar 

  194. Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    Article  CAS  Google Scholar 

  195. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  196. Zhai P, Chen XB, Schreyer DJ (2013) Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication 5:015009. https://doi.org/10.1088/1758-5082/5/1/015009

    Article  CAS  Google Scholar 

  197. Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliver Rev 64(Supplement):194–205

    Article  Google Scholar 

  198. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  Google Scholar 

  199. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  Google Scholar 

  200. Rocha PM, Santo VE, Gomes ME et al (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Pol 26:493–507

    Article  CAS  Google Scholar 

  201. Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into κ-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B-Enzym 31:143–150

    Article  CAS  Google Scholar 

  202. Popa EG, Carvalho PP, Dias AF et al (2011) In vitro and in vivo biocompatibility evaluation of κ -carrageenan hydrogels aimed at applications in regenerative medicine. Histol Histopathol 26:62

    Google Scholar 

  203. Popa EG, Caridade SG, Mano JF et al (2015) Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 9:550–563

    Article  CAS  Google Scholar 

  204. Sezer AD1, Akbuğa J (2006) Fucosphere—new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522

    Article  CAS  Google Scholar 

  205. Huang YC, Li RY (2014) Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 12:4379–4398

    Article  CAS  Google Scholar 

  206. Nakamura S, Nambu M, Ishizuka T et al (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel on in vitro and in vivo vascularization. J Biomed Mater Res A 85:619–627

    Article  CAS  Google Scholar 

  207. Lee EJ, Khan SA, Lim KH (2009) Chitosan-nanoparticle preparation by polyelectrolyte complexation. World J Eng 6:541–542

    Google Scholar 

  208. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  Google Scholar 

  209. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215

    Article  CAS  Google Scholar 

  210. Goissis G, de Sousa MH (2009) Characterization and in vitro release studies of tetracycline and rolitetracycline imobilized on anionic collagen membranes. Mater Res-Ibero-Am J 12:69–74

    CAS  Google Scholar 

  211. Yarboro SR, Baum EJ, Dahners LE (2007) Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 89:929–933

    Article  Google Scholar 

  212. Kurisawa M, Chung JE, Yang YY et al (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 14:4312–4314

    Article  CAS  Google Scholar 

  213. Xu K, Lee F, Gao S et al (2015) Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab. J Control Release 216:47–55

    Article  CAS  Google Scholar 

  214. Oyarzun-Ampuero FA, Brea J, Loza MI et al (2009) Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129

    Article  CAS  Google Scholar 

  215. Lim ST, Martin GP, Berry DJ et al (2000) Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66:281–292

    Article  CAS  Google Scholar 

  216. de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024

    Article  Google Scholar 

  217. Grech JMR, Mano JF, Reis RL (2008) Chitosan beads as templates for layer-by-layer assembly and their application in the sustained release of bioactive agents. J Bioact Compat Pol 23:367–380

    Article  CAS  Google Scholar 

  218. Guo YM, Shi XM, Fang QL et al (2014) Facile preparation of hydroxyapatite-chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs. Mater Lett 125:111–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports rendered by the Directors, CSIR-Central Glass and Ceramic Research Institute and the Honorable Vice Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Kumar Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lalzawmliana, V., Mukherjee, P., Kundu, B., Nandi, S.K. (2019). Clinical Application of Biomimetic Marine-Derived Materials for Tissue Engineering. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_15

Download citation

Publish with us

Policies and ethics