Skip to main content

Drag-Type Hydraulic Rotor

  • Chapter
  • First Online:
Methods for Solving Complex Problems in Fluids Engineering
  • 612 Accesses

Abstract

The advantages of the drag-type rotor in wind energy utilization have been widely acknowledged. In recent years, the exploitation of water energy in off-shore regions, rivers or even pipes guides the application of the drag-type rotor into a new stage. In this chapter, a drag-type rotor operating in the medium of water is investigated. The water tunnel is used to furnish flow environment for the rotor. Flow patterns near the rotor are measured with particle image velocimetry technique and the wake flow is particularly emphasized. At various rotor setting angles and upstream velocity magnitudes, velocity and vorticity distributions in the wake flows are depicted and compared. The time-dependent torque coefficient of the rotor is calculated based on CFD results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laws ND, Epps BP. Hydrokinetic energy conversion: technology, research, and outlook. Renew Sustain Energy Rev. 2016;57:1245–1259.

    Article  Google Scholar 

  2. Lago LI, Ponta FL, Chen L. Advances and trends in hydrokinetic turbine systems. Energy Sustain Dev. 2010;14:287–296.

    Article  Google Scholar 

  3. Vermaak HJ, Kusakana K, Koko SP. Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renew Sustain Energy Rev. 2014;29:625–633.

    Article  Google Scholar 

  4. Kirke BK. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew Energy. 2011;36(11):3013–3022.

    Article  Google Scholar 

  5. Al-Bahadly I. Building a wind turbine for rural home. Energy Sustain Dev. 2009;13:159–165.

    Article  Google Scholar 

  6. Sahim K, Santoso D, Radentan A. Performance of combined water turbine with semielliptic section of the Savonius rotor. Int J Rotating Mach. 2013;2013, Article ID: 985943.

    Google Scholar 

  7. Chen J, Yang HX, Liu CP, Lau CH, Lo M. A novel vertical axis water turbine for power generation from water pipelines. Energy. 2013;54:184–193.

    Article  Google Scholar 

  8. Ikeda T, Iio S, Tatsuno K. Performance of nano-hydraulic turbine utilizing waterfalls. Renew Energy. 2010;35(1):293–300.

    Article  Google Scholar 

  9. Kumar D, Sarkar S. Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis. Energy. 2016;116:609–618.

    Article  Google Scholar 

  10. Thiyagaraj J, Rahamathullah I, SureshPrabu P. Experimental Investigations on the performance characteristics of a modified four bladed Savonius hydro-kinetic turbine. Int J Renew Energy Res. 2016;6(4):1530–1536.

    Google Scholar 

  11. Kamoji MA, Kedare SB, Prabhu SV. Performance tests on helical Savonius rotors. Renew Energy. 2009;34(3):521–529.

    Article  Google Scholar 

  12. Miyoshi N, Shouichiro I, Toshihiko I. Performance of Savonius rotor for environmentally friendly hydraulic turbine. J Fluid Sci Technol. 2008;3(3):420–429.

    Article  Google Scholar 

  13. McTavish S, Feszty D, Sankar T. Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation. Renew Energy. 2012;41:171–179.

    Article  Google Scholar 

  14. Zhou T, Rempfer D. Numerical study of detailed flow field and performance of Savonius wind turbines. Renew Energy. 2013;51:373–378.

    Article  Google Scholar 

  15. Rosmin N, Jauhari AS, Mustaamal AH, Husin F, Hassan MY. Experimental study for the single-stage and double-stage two-bladed Savonius micro-sized turbine for rain water harvesting (RWH) system. Energy Procedia. 2015;68:274–281.

    Article  Google Scholar 

  16. Damak A, Driss Z, Abid MS. Experimental investigation of helical Savonius rotor with a twist of 180°. Renew Energy. 2013;52:136–142.

    Article  Google Scholar 

  17. Iio S, Katayama Y, Uchiyama F, Sato E, Ikeda T. Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate. J Thermal Sci. 2011;20(3):224–228.

    Article  Google Scholar 

  18. Akwa JV, Vielmo HA, Petry AP. A review on the performance of Savonius wind turbines. Renew Sustain Energy Rev. 2012;16(5):3054–3064.

    Article  Google Scholar 

  19. Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl Energy. 2015;137:117–125.

    Article  Google Scholar 

  20. Kumar A, Saini RP. Performance parameters of Savonius type hydrokinetic turbine—a review. Renew Sustain Energy Rev. 2016;64:289–310.

    Article  MathSciNet  Google Scholar 

  21. Harries T, Kwan A, Brammer J, Falconer R. Physical testing of performance characteristics of a novel drag-driven vertical axis tidal stream turbine; with comparisons to a conventional Savonius. Int J Mar Energy. 2016;14:215–228.

    Article  Google Scholar 

  22. Goh SC, Boopathy SR, Krishnaswami C, Schlüter JU. Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation. Renew Energy. 2016;87:332–345.

    Article  Google Scholar 

  23. Rafiuddin Ahmed M, Faizal M, Prasad K, Cho Y-J, Kim C-G, Lee Y-H. Exploiting the orbital motion of water particles for energy extraction from waves. J Mech Sci Technol. 2010;24(4):943–949.

    Article  Google Scholar 

  24. Khan MNI, Iqbal T, Hinchey M, Masek V. Performance of Savonius rotor as a water current turbine. J Ocean Technol. 2009;4(2):71–83.

    Google Scholar 

  25. Danao LA, Eboibi O, Howell R. An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine. Appl Energy. 2013;107:403–411.

    Article  Google Scholar 

  26. Kailash G, Eldho TI, Prabhu SV. Performance study of modified Savonius water turbine with two deflector plates. Int J Rotating Mach 2012;2012, Article ID 679247.

    Article  Google Scholar 

  27. Edwards JM, Danao LA, Howell RJ. PIV measurements and CFD simulation of the performance and flow physics and of a small-scale vertical axis wind turbine. Wind Energy. 2015;18(2):201–217.

    Article  Google Scholar 

  28. Fujisawa N, Gotoh F. Visualization study of the flow in and around a Savonius rotor. Exp Fluids. 1992;12(6):407–412.

    Article  Google Scholar 

  29. Altan BD, Altan G, Kovan V. Investigation of 3D printed Savonius rotor performance. Renew Energy. 2016;99:584–591.

    Article  Google Scholar 

  30. Rafiuddin Ahmed M, Faizal M, Lee Y-H. Optimization of blade curvature and inter-rotor spacing of Savonius rotors for maximum wave energy extraction. Ocean Eng. 2013;65:32–38.

    Article  Google Scholar 

  31. Akinari S, Yuichi M, Yuji T, Yasushi T. Interactive flow field around two Savonius turbines. Renew Energy. 2011;36(2):536–545.

    Article  Google Scholar 

  32. Kang C, Liu H, Xin Y. Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors. Renew Sustain Energy Rev. 2014;33:499–508.

    Article  Google Scholar 

  33. Lee J-H, Lee Y-T, Lim H-C. Effect of twist angle on the performance of Savonius wind turbine. Renew Energy. 2016;89:231–244.

    Article  Google Scholar 

  34. Wang L, Yeung RW. On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations. Appl Energy. 2016;183:823–836.

    Article  Google Scholar 

  35. Faizal M, Rafiuddin Ahmed M, Lee Y-H. On utilizing the orbital motion in water waves to drive a Savonius rotor. Renew. Energy. 2010;35(1):164–169.

    Google Scholar 

  36. Ghosh A, Biswas A, Sharma KK, Gupta R. Computational analysis of flow physics of a combined three bladed Darrieus Savonius wind rotor. J Energy Inst. 2015;88(4):425–437.

    Article  Google Scholar 

  37. Al-Kayiem HH, Bhayo BA, Assadi M. Comparative critique on the design parameters and their effect on the performance of S-rotors. Renew Energy. 2016;99:1306–1317.

    Article  Google Scholar 

  38. Nasef MH, El-Askary WA, AbdEL-hamid AA, Gad HE. Evaluation of Savonius rotor performance: static and dynamic studies. J Wind Eng Ind Aerodyn. 2013;123:1–11.

    Article  Google Scholar 

  39. Sharma S, Sharma RK. Performance improvement of Savonius rotor using multiple quarter blades—a CFD investigation. Energy Convers Manage. 2016;127:43–54.

    Article  Google Scholar 

  40. Nasef MH, El-Askary WA, AbdEL-hamid AA, Gad HE. Evaluation of Savonius rotor performance: static and dynamic studies. J Wind Eng Ind Aerodyn. 2013;123:1–11.

    Article  Google Scholar 

  41. Frikha S, Driss Z, Ayadi E, Masmoudi Z, Abid MS. Numerical and experimental characterization of multi-stage Savonius rotors. Energy. 2016;114:382–404.

    Article  Google Scholar 

  42. Lam HF, Peng HY. Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations. Renew Energy. 2016;90:386–398.

    Article  Google Scholar 

  43. Fujisawa N. Velocity measurements and numerical calculations of flow fields in and around Savonius rotors. J Wind Eng Ind Aerodyn. 1996;59(1):39–50.

    Article  Google Scholar 

  44. Wekesa DW, Wang C, Wei Y, Zhu W. Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. J Wind Eng Ind Aerodyn. 2016;157:1–14.

    Article  Google Scholar 

  45. Dobrev I, Massouh F. CFD and PIV investigation of unsteady flow through Savonius wind turbine. Energy Procedia. 2011;6:711–720.

    Article  Google Scholar 

  46. Kacprzak K, Liskiewicz G, Sobczak K. Numerical investigation of conventional and modified Savonius wind turbines. Renew Energy. 2013;60:578–585.

    Article  Google Scholar 

  47. Sarma NK, Biswas A, Misra RD. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Convers Manage. 2014;83:88–98.

    Article  Google Scholar 

  48. Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl Energy. 2015;137:117–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Kang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, C., Liu, H., Mao, N., Zhang, Y. (2019). Drag-Type Hydraulic Rotor. In: Methods for Solving Complex Problems in Fluids Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2649-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2649-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2648-6

  • Online ISBN: 978-981-13-2649-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics