Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1054))

Abstract

Mammalian hair fibres can be structurally divided into three main components: a cuticle, cortex and sometimes a medulla. The cuticle consists of a thin layer of overlapping cells on the surface of the fibre, constituting around 10% of the total fibre weight. The cortex makes up the remaining 86–90% and is made up of axially aligned spindle-shaped cells of which three major types have been recognised in wool: ortho, meso and para. Cortical cells are packed full of macrofibril bundles, which are a composite of aligned intermediate filaments embedded in an amorphous matrix. The spacing and three-dimensional arrangement of the intermediate filaments vary with cell type. The medulla consists of a continuous or discontinuous column of horizontal spaces in the centre of the cortex that becomes more prevalent as the fibre diameter increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maderson, P. F. A. (2003). Mammalian skin evolution: A reevaluation. Experimental Dermatology, 12(3), 233–236.

    Article  CAS  PubMed  Google Scholar 

  2. Alibardi, L. (2006). Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. International Review of Cytology, 253, 177–259.

    Article  CAS  PubMed  Google Scholar 

  3. Eckhart, L., et al. (2008). Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proceedings of the National Academy of Sciences of the United States of America, 105, 18419–18423.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bradbury, J. H. (1973). The structure and chemistry of keratin fibers. Advances in Protein Chemistry, 27, 111–211.

    Article  CAS  PubMed  Google Scholar 

  5. Bradbury, J. H., & Leeder, J. D. (1970). Keratin fibres. IV. Structure of cuticle. Australian Journal of Biological Science, 23, 843–854.

    Article  CAS  Google Scholar 

  6. Jones, L. N., & Rivett, D. E. (1997). The role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron, 28(6), 469–485.

    Article  CAS  PubMed  Google Scholar 

  7. Swift, J. A. (1999). Human hair cuticle: Biologically conspired to the owner’s advantage. Journal of Cosmetic Science, 50(1), 23–47.

    Google Scholar 

  8. Jones, L. N. (2001). Hair structure anatomy and comparative anatomy. Clinics in Dermatology, 19(2), 95–103.

    Article  CAS  PubMed  Google Scholar 

  9. von Allwörden, K. (1916). Die eigenschaften der schafwolle und eine neue untersuchungsmethodezum nachweis geschädiger wolle auf chemischem wege. Angewandte Chemie, 29, 77–78.

    Article  Google Scholar 

  10. Logan, R. I., et al. (1989). Analysis of the intercellular and membrane lipids of wool and other animal fibers. Textile Research Journal, 59, 109–113.

    Article  CAS  Google Scholar 

  11. Negri, A. P., Cornell, H. J., & Rivett, D. E. (1991). The nature of covalently bound fatty acids in wool fibres. Australian Journal of Agricultural Research, 42(8), 1285–1292.

    Article  CAS  Google Scholar 

  12. Negri, A. P., Cornell, H. J., & Rivett, D. E. (1993). A model for the surface of keratin fibers. Textile Research Journal, 63(2), 109–115.

    Article  CAS  Google Scholar 

  13. Swift, J. A. (1997). Morphology and histochemistry of human hair. In P. Jollès, H. Zahn, & H. Höcker (Eds.), Formation and structure of human hair (pp. 149–175). Basel: Birkhäuser Verlag.

    Chapter  Google Scholar 

  14. Bringans, S. D., et al. (2007). Characterization of the exocuticle a-layer proteins of wool. Experimental Dermatology, 16(11), 951–960.

    Article  CAS  PubMed  Google Scholar 

  15. Jones, L. N., Kaplin, I. J., & Legge, G. J. F. (1993). Distributions of protein moieties in α-keratin sections. Journal of Computer Assisted Microscopy, 5(1), 85–88.

    Google Scholar 

  16. Hallegot, P., & Corcuff, P. (1993). High resolution spatial maps of sulphur from human hair sections; an EELS study. Journal of Microscopy, 172, 131–136.

    Article  CAS  PubMed  Google Scholar 

  17. MacKinnon, P. J., Powell, B. C., & Rogers, G. E. (1990). Structure and expression of genes for a class of cysteine-rich proteins of the cuticle layers of differentiating wool and hair follicles. Journal of Cell Biology, 111(6), 2587–2600.

    Article  CAS  PubMed  Google Scholar 

  18. Jones, L. N., et al. (2010). Location of keratin-associated proteins in developing fiber cuticle cells using immunoelectron microscopy. International Journal of Trichology, 2(2), 89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langbein, L., et al. (1999). The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. Journal of Biological Chemistry, 274(28), 19874–19884.

    Article  CAS  PubMed  Google Scholar 

  20. Langbein, L., et al. (2001). The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. Journal of Biological Chemistry, 276(37), 35123–35132.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Z., et al. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation, 77(3), 307–316.

    Article  PubMed  Google Scholar 

  22. Kulkarni, V. G., Robson, R. M., & Robson, A. (1971). Studies on the orthocortex and paracortex of Merino wool. Applied Polymer Symposium, 18, 127–146.

    Google Scholar 

  23. Rogers, G. E. (1959). Electron microscopy of wool. Journal of Ultrastructure Research, 2(3), 309–330.

    Article  CAS  PubMed  Google Scholar 

  24. Kaplin, I. J., & Whiteley, K. J. (1978). An electron microscope study of fibril: Matrix arrangements in high and low crimp wool fibres. Australian Journal of Biological Science, 31, 231–240.

    Article  CAS  Google Scholar 

  25. Harland, D. P., Vernon, J. A., Woods, J. L., Nagase, S., Itou, T., Koike, K., Scobie, D. A., Grosvenor, A. J., Dyer, J. M., & Clerens, S. (2018). Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. The Journal of Experimental Biology, 221(6), jeb172312.

    Article  PubMed  Google Scholar 

  26. Horio, M., & Kondo, T. (1953). Crimping of wool fibers. Textile Research Journal, 23(6), 373–387.

    Article  CAS  Google Scholar 

  27. Mercer, E. H. (1953). The heterogeneity of the keratin fibers. Textile Research Journal, 23(6), 388–397.

    Article  CAS  Google Scholar 

  28. Swift, J. A. (1977). The histology of keratin fibers. In R. S. Asquith (Ed.), Chemistry of natural protein fibers (pp. 81–146). London: Wiley.

    Chapter  Google Scholar 

  29. Jones, L. N., et al. (1990). Elemental distribution in keratin fibre/follicle sections. In Proceedings of the 8th International Wool Textile Research conference. Christchurch: Wool Research Organisation of New Zealand.

    Google Scholar 

  30. Caldwell, J. P., et al. (2005). The three-dimensional arrangement of intermediate filaments in Romney wool cortical cells. Journal of Structural Biology, 151(3), 298–305.

    Article  CAS  PubMed  Google Scholar 

  31. Orwin, D. F. G., Woods, J. L., & Ranford, S. L. (1984). Cortical cell types and their distribution in wool fibres. Australian Journal of Biological Science, 37, 237–255.

    Article  CAS  Google Scholar 

  32. Bryson, W. G., et al. (2009). Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair. Journal of Structural Biology, 166(1), 46–58.

    Article  PubMed  Google Scholar 

  33. Harland, D. P., et al. (2014). Three-dimensional architecture of macrofibrils in the human scalp hair cortex. Journal of Structural Biology, 185(3), 397–404.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, A., et al. (2012). Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibres of similar diameter. Journal of Agricultural and Food Chemistry, 60(10), 2434–2446.

    Article  CAS  PubMed  Google Scholar 

  35. Woods, J. L., et al. (2011). Morphology and ultrastructure of antler velvet hair and body hair from red deer (Cervus elaphus). Journal of Morphology, 272(1), 34–49.

    Article  CAS  PubMed  Google Scholar 

  36. De Cassia Comis-Wagner, R., et al. (2007). Electron microscopic observations on human hair medulla. Journal of Microscopy, 226, 54–63.

    Article  PubMed  Google Scholar 

  37. Harding, H. W., & Rogers, G. E. (1971). (γ-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry, 10, 624–630.

    Article  CAS  PubMed  Google Scholar 

  38. Rogers, G. E. (1989). Special biochemical features of the hair follicle. In G. E. Rogers, P. J. Reis, K. A. Ward, & R. C. Marshall (Eds.), The biology of wool and hair (pp. 69–85). London/New York: Chapman and Hall.

    Chapter  Google Scholar 

  39. Swift, J. A., & Bews, B. (1974). The chemistry of human hair cuticle-II: The isolation and amino acid analysis of the cell membranes and A-layer. Journal of the Society of Cosmetic Chemistry, 25, 355–366.

    CAS  Google Scholar 

  40. Orwin, D. F. (1971). Cell differentiation in the lower outer sheath of the Romney wool follicle: A companion cell layer. Australian Journal of Biological Science, 24(5), 989–999.

    Article  CAS  Google Scholar 

  41. Bryson, W. G., et al. (1995). Characterisation of proteins obtained from papain/dithiothreitol digestion of merino and romney wools. In Proceedings of the 9th International Wool Textile research conference, Biella, Italy.

    Google Scholar 

  42. Robbins, C. R. (2009). The cell membrane complex: Three related but different cellular cohesion components of mammalian hair fibers. Journal of the Society of Cosmetic Chemistry, 60(4), 437–465.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Plowman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plowman, J.E., Harland, D.P. (2018). Fibre Ultrastructure. In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_1

Download citation

Publish with us

Policies and ethics