Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 482))

  • 1109 Accesses

Abstract

In order to evaluate the reliability of the inverter, this paper adopted sequence and stress accelerated degradation test of a certain type of inverter. Take the voltage as the accelerated stress, setting 0.8 as the linear growth proportion coefficient of stress levels, through the detection of the inverter IGBT collector emitter voltage state and diode voltage to judge the wear condition of the inverter. The accelerated model is obtained through analyzing the test data, and the model parameters are estimated by the least square method. At the same time, the reliability of the inverter is evaluated, and the reliability curve is obtained. Finally, the reliability at the normal stress level is solved through accelerate model. In order to evaluate the effectiveness of Bayes reliability analysis of inverter, the Monte Carlo simulation about accelerated test is done, simulation results and evaluation results are similar. It shows that the accelerated degradation testing data is valid. The evaluation method can be used to evaluate the reliability of other power electronic devices in the rail transit vehicle .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minwu C (2011) The reliability assessment of traction substation of high speed railway by the GO methodology. Power Syst Protect Control 39(18):56–61 (in Chinese)

    Google Scholar 

  2. Jiankang Z, Xiaohua L, Xia Y (2015) Discussion on protection configuration and setting calculation for 750 kV transformer. Power Syst Protect Control 43(9):89–94 (in Chinese)

    Google Scholar 

  3. Kaiyi Z, Yifa S, Yongsheng L (2016) Research on transient characteristics of passing neutral section in CRH2 trains traction motor. Res Develop 4:38–41

    Google Scholar 

  4. Chenxi D, Zhigang L, Song G (2016) Fault diagnosis for traction transformer of high speed railway on the integration of model-based diagnosis and fuzzy petri nets. Power Syst Protect Control 44(11):26–32 (in Chinese)

    Google Scholar 

  5. Gaofu D, Dan Z, Pengfeng L, Chunchun Z (2016) Study of control strategy for active power filter based on modular multilevel converter. Power Syst Protect Control 43(8):74–80 (in Chinese)

    Google Scholar 

  6. Yashun W, Chunhua Z, Xun C, Yongqiang M (2009) Simulation-based optimal design for accelerated degradation tests with mixed-effects model. J Mech Eng 45(12):108–114 (in Chinese)

    Article  Google Scholar 

  7. Kun X, Xiaohui G, Chen P (2014) Reliability evaluation of the O-type rubber sealing ring for fuse based on constant stress accelerated degradation testing. J Mech Eng 50(16):62–69 (in Chinese)

    Article  Google Scholar 

  8. Yongqiang M (2008) Investigation in lifetime assessment of electron multiplier based on double-stress accelerated degradation test. National University of Defense Technology (in Chinese)

    Google Scholar 

  9. Xiang J, Xiaolin W, Bo G (2016) Reliability assessment for very few failure data and zero-failure data. J Mech Eng 52(2):182–188 (in Chinese)

    Article  Google Scholar 

  10. Dexin Z, Hongzhao L (2013) Reliability evaluation of high-speed train bearing with minimum sample. J Central South Univ 44(3):963–969 (in Chinese)

    Google Scholar 

  11. Trabelsi M, Boussak M, Benbouzid M (2016) Multiple criteria for high performance real-time diagnostic of single and multiple open-switch faults in ac-motor drives: application to IGBT-based voltage source inverter. Electr Power Syst Res 144:136–149

    Article  Google Scholar 

  12. Xiaoping D, Yangang W, Yibo W, Haihui L, Guoyou L, Daohui L, Steve J (2016) Reliability design of direct liquid cooled power semiconductor module for hybrid and electric vehicles. Microelectron Reliab (in Chinese)

    Google Scholar 

  13. Czerny B, Khatibi G (2016) Interface reliability and lifetime prediction of heavy aluminum wire bonds. Microelectron Reliab 58:65–72

    Article  Google Scholar 

  14. Choi UM, Blaabjerg F, Jorgensen S, Lannuzzo F, Wang H, Uhrenfeldt C, Munk-Nielsen S (2016) Power cycling test and failure analysis of molded intelligent power IGBT module under different temperature swing duration. Microelectron Reliab

    Google Scholar 

  15. Hamada MS, Wilson AG, Shane Reese C, Martz HF (2008) Bayesian Reliability. Springer, pp 51–60

    Google Scholar 

  16. China Electronics Standardization Institute (1987) Reliability Test Table. National Defend Industry Press, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This article is sponsored by National Natural Science Foundation of China under grant no. 51175028, Great scholars training project under CIT&TCD20150312, and Beijing outstanding talent training project under 2012D005017000006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, X., Yang, J. (2018). Reliability Evaluation of Inverter Based on Accelerated Degradation Test. In: Jia, L., Qin, Y., Suo, J., Feng, J., Diao, L., An, M. (eds) Proceedings of the 3rd International Conference on Electrical and Information Technologies for Rail Transportation (EITRT) 2017. EITRT 2017. Lecture Notes in Electrical Engineering, vol 482. Springer, Singapore. https://doi.org/10.1007/978-981-10-7986-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7986-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7985-6

  • Online ISBN: 978-981-10-7986-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics