Skip to main content

Exploring the Multifaceted Role of Microbes in Pharmacology

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

With the continuous growth in human population, rising incidence and predominance of various diseases, there is growing need for development of natural as well as engineered diagnostic systems and drugs in order to meet the therapeutic demands. Since microorganisms have evolved in nature with an astounding set of mechanisms utilized in detecting and responding to varied, transient and enduring external stimuli, such microbial systems can be utilized in diagnosis as well as giving competition to animal cells in producing value added products due to its easy and low cost processing. The re-making of various biosensing systems by incorporating whole cells intend to provide efficient biological detection and measurable response. Microbes governing the synthesis of biopolymers are also found to be exploited in developing new generation of novel drug delivery systems and as repair material of tissues. The area of synthetic biology together with novel microbial systems and whole cells is gaining rapid attention in diagnostics and global health challenges. With this background, the present chapter highlights various applications of microbes in pharmaceutical industries with special emphasis on diagnosis and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff A, Klemke C, König GM, Wright AD (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomycesanomalus. J Nat Prod 66:706–708

    Article  CAS  Google Scholar 

  • Abdel-Lateff A, König GM, Fisch KM, Höller U, Jones PG, Wright AD (2005) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65:1605–1611

    Article  Google Scholar 

  • Aumiller JJ, Hollister JR, Jarvis DL (2003) A transgenic insect cell line engineered to produce CMP–sialic acid and sialylated glycoproteins. Glycobiology 13(6):497–507

    Article  CAS  Google Scholar 

  • Ballio A, Bossa F, Collina A, Gallo M, Iacobellis NS, Paci M, Pucci P, Scaloni A, Segre A, Simmaco M (1990) Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringaepv. syringae. FEBS Lett 269:377–380

    Article  CAS  Google Scholar 

  • Bleckwenn NA, Shiloach J (2004) Large-scale cell culture. Curr Protoc Immunol. A-1U

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Buss AD, Waigh RD (1995) Natural products as leads for new pharmaceuticals. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery. Principles and practice, vol 1. Wiley, New York, pp 983–1033

    Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedianigriscansa. Microbiology 148:2675–2685

    Article  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300

    Article  CAS  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharm Rev. 2013 7:11

    Article  Google Scholar 

  • Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “CandidatusEndobugulasertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537

    Article  CAS  Google Scholar 

  • Devine DA, Marsh PD (2009) Prospects for the development of probiotics and prebiotics for oral applications. J Ora Micro 1:1949

    Article  Google Scholar 

  • Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Indu Microbiol Biotech 38:873–890

    Article  CAS  Google Scholar 

  • Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Eng 42:355–357

    Article  CAS  Google Scholar 

  • Ghosh G, Bachas LG, Anderson KW (2008) Biosensor incorporating cell barrier architectures on ion selective electrodes for early screening of cancer. Anal Bioanal Chem 391:2783–2791

    Article  CAS  Google Scholar 

  • Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998) Isolation, structure determination, and biological activity of dolastatin and lyngbyastatin 1 from Lyngbyamajuscula/Schizothrixcalcicola cyanobacterial assemblages. J Nat Prod 61:1221–1225

    Article  CAS  Google Scholar 

  • Harrison L, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Microbiology 137:2857–2865

    CAS  Google Scholar 

  • Hidalgo-Bastida LA, Barry JJA, Everitt NM, Rose FRAJ, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM (2007) Cell Adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomaterialia 3:457–462

    Article  CAS  Google Scholar 

  • Hoffmann S, Maculloch B, Batz M (2015) Economic burden of major foodborne illnesses acquired in the United States. USDA-140. GPO, Washimhton, DC

    Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1, 4-galactosyltransferase and α2, 6-sialyltransferase genes. Glycobiology 11(1):1–9

    Article  CAS  Google Scholar 

  • Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41(50):15093–15104

    Article  CAS  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624

    Article  CAS  Google Scholar 

  • Jenkins N (2007) Modifications of therapeutic proteins: challenges and prospects. Cytotechnology 53(1–3):121–125

    Article  CAS  Google Scholar 

  • Kim EJ, Cho SH, Yuk SH (2001) Polymeric microspheres composed of pH/temperature- sensitive polymer complex. Biomaterials 22:2495–2499

    Article  CAS  Google Scholar 

  • Kintzios SE (2007) Cell-based biosensors in clinical chemistry. Mini-Rev Med Chem 7:1019–1026

    Article  CAS  Google Scholar 

  • Kurkuri MD, Aminabhavi TM (2004) Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Release 96:9–20

    Article  CAS  Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:610–907

    Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6(11):903–918

    Article  CAS  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  Google Scholar 

  • Martin O, Averous L (2001) Poly (Lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  • Masci G, Bontempo D, Crescenzi V (2002) Synthesis and characterization of thermoresponsive N-isopropylacrylamide/methacrylated pullulan hydrogels. Polymer 43:5587–5593

    Article  CAS  Google Scholar 

  • Mihai D, Mocanu G, Carpov A (2001) Chemical reactions on polysaccharides: I. Pullulan sulfation. Eur Polym J 37:541–546

    Article  CAS  Google Scholar 

  • Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    Article  CAS  Google Scholar 

  • Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA) inorganic Ohase composites for tissue engineering applications. Biomacromolecules 7:2249–2258

    Article  CAS  Google Scholar 

  • Mohan C, Kim YG, Koo J et al (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3(5):624–630

    Article  CAS  Google Scholar 

  • Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326

    Article  Google Scholar 

  • Nissim A, Chernajovsky Y (2008) Historical development of monoclonal antibody therapeutics. In: Therapeutic antibodies. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Rogers KR, Gerlach CL (1999) An update on environmental biosensors. Environ Sci Technol 33(23):500A–506A

    Article  CAS  Google Scholar 

  • Rechnitz GA, Kobos RK, Riechel SJ, Gebauer CR (1977) A bio-selective membrane electrode prepared with living bacterial cells. Anal Chim Acta 94:357–365

    Article  CAS  Google Scholar 

  • Redwan ERM (2007) Cumulative updating of approved biopharmaceuticals. Hum Antibodies 16:137–158

    Article  CAS  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635

    Article  CAS  Google Scholar 

  • Struss PP, Ensor CM, Raut N, Daunert S (2010) Paper strip whole cell biosensors: a portable test for the semi quantitative detection of bacterial quorum signaling molecules. Anal Chem 82:4457–4463

    Article  CAS  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG (2010) Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol 21:780–786

    Article  Google Scholar 

  • Wang X, Liu M, Wang X, Wu Z, Yang L, Xia S, Chen L, Zhao J (2013) p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens Bioelectron 41:557–562

    Article  CAS  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  Google Scholar 

  • Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104

    Article  Google Scholar 

  • Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Meta Eng 17:42

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Director, MNNIT Allahabad for providing necessary research facilities and acknowledge the support of MHRD sponsored project “Design and Innovation Centre” and Centre for Medical Diagnostic and Research (CMDR), MNNIT Allahabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, M. et al. (2018). Exploring the Multifaceted Role of Microbes in Pharmacology. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_15

Download citation

Publish with us

Policies and ethics