Skip to main content

Principles of Solidification

  • Chapter
  • First Online:
Al-Si Alloys

Abstract

This chapter reviews the fundamental aspects of alloy solidification and the various features that are measured or characterized to assess cast structure quality and solidification rate. Also reviewed are the different phases, from primary α-Al dendrites to secondary phase such as primary Si platelet, Fe-bearing phases, and Al2Cu and Mg2Si phases. Finally, the conditions for stable pore nucleation are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gruzleski, J.E., and B.M. Closset. 1990. The treatment of liquid aluminum-silicon alloys. Des Plaines: American Foundry Society, Inc.

    Google Scholar 

  2. Zalensas, D.L. 1993. Aluminum casting technology. Des Plaines: American Foundrymen’s Society.

    Google Scholar 

  3. Hamed, Q.S., M. Dogan, and R. Elliott. 1993. The dependence of secondary dendrite arm spacing on solidification conditions of Al-7 Si-0.5 Mg alloys treated with TiBAl and TiBAl/Sr additions. Cast Metals 6: 47–53.

    Article  Google Scholar 

  4. Paray, F., and J.E. Gruzleski. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part I: Microstructure. Cast Metals 7: 29–40.

    Article  Google Scholar 

  5. ———. 1994. Microstructure-mechanical property relationships in a 356 alloy. Part II: Mechanical properties. Cast Metals 7: 153–163. https://doi.org/10.1080/09534962.1994.11819174.

    Article  Google Scholar 

  6. Djurdjevic, M., J. Sokolowski, and T. Stockwell. 1998. Control of the aluminum-silicon alloy solidification process using thermal analysis. Meta 4: 237–248.

    Google Scholar 

  7. Djurdjevic, M., T. Stockwell, and J. Sokolowski. 1997. The effect of strontium on the microstructure of the aluminum-silicon and aluminum-copper eutectics in the 319 aluminum alloy. International Journal of Cast Metals Research 12 (2): 67–73.

    Article  Google Scholar 

  8. Djurdjevic, M., H. Jiang, and J. Sokolowski. 2001. On-line prediction of aluminum–silicon eutectic modification level using thermal analysis. Materials Characterization 46 (1): 31–38. https://doi.org/10.1016/S1044-5803(00)00090-5.

    Article  Google Scholar 

  9. Paray, F., and J.E. Gruzleski. 1994. Factors to consider in modification. Transactions of the American Foundrymen’s Society 102: 833–842.

    Google Scholar 

  10. Backerud, L., G. Chai, and J. Tamminen. 1990. Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys, 266. American Foundrymen’s Society, Inc.

    Google Scholar 

  11. Paray, F., and J.E. Gruzleski. 1993. Modification-A parameter to consider in the heat treatment of Al-Si alloys. Cast Metals 5: 187–197.

    Article  Google Scholar 

  12. Campbell, J. 1997. 10 rules for good castings. Modern Casting 87: 36–39.

    Google Scholar 

  13. Campbell, J. 2003. Castings. 2nd ed. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  14. Bourcier, G.F., J. Dickinson, J. Tessandori, and D. Schiffer. 1985. Aluminum recycling casebook, 56. The Aluminum Association, Inc.

    Google Scholar 

  15. Rooy, E.L. 1992. Mechanisms of porosity formation in aluminum. Modern Casting 82 (9): 34–36.

    Google Scholar 

  16. Mohanty, P.S., F.H. Samuel, and J.E. Gruzleski. 1995. Experimental study on pore nucleation by inclusions in aluminum castings. Transactions of the American Foundrymen’s Society 103: 555–564.

    Google Scholar 

  17. Callister, W.D. 1994. Materials science and engineering. 3rd ed. New York: Wiley Publishing.

    Google Scholar 

  18. Crepeau, P.N. 1995. Effect of iron in Al-Si casting alloys: A critical review. Transactions of the American Foundrymen’s Society 103: 361–366.

    Google Scholar 

  19. Mackay, R.I., and J.E. Gruzleski. 1998. Quantification of magnesium in 356 alloy via thermal analysis. International Journal of Cast Metals Research 10: 255–266.

    Article  Google Scholar 

  20. MacKay, R., and J. Sokolowski. 2010. Comparison between wedge test castings and component engine block casting properties. International Journal of Metalcasting 4 (4): 33–50. https://doi.org/10.1007/bf03355501.

    Article  Google Scholar 

  21. ———. 2008. Experimental observations of dendrite coarsening & Al-Si eutectic growth in progressively quenched structures of Al-Si-Cu casting alloys. International Journal of Metalcasting 2 (2): 57–75. https://doi.org/10.1007/bf03355428.

    Article  Google Scholar 

  22. ———. 2010. Effect of silicon & copper concentrations, and cooling rate on soundness in casting structure. International Journal of Cast Metals Research 23: 7–22. https://doi.org/10.1179/174313309X449282.

    Article  Google Scholar 

  23. Mackay, R., J. Sokolowski, R. Hasenbush, and W. Evans. 2002. Effect of Cu and Si on the solidification kinetics of 3XX. X Series alloys during Mushy Zone Developemet. Transactions of the American Foundry Society.

    Google Scholar 

  24. Caton, M.J., J.Wayne Jones, J.M. Boileau, and J.E. Allison. 1999. The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metallurgical and Materials Transactions A 30 (12): 3055–3068.

    Article  Google Scholar 

  25. Gall, K., N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan. 1999. The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy. Metallurgical and Materials Transactions A 30 (12): 3079–3088.

    Article  Google Scholar 

  26. Backerud, L., E. Krol, and T. Tamminen. 1996. Solidification characteristics of aluminum alloys. Vol. 1. Wrought alloys. Vol. 1, 156. AFS/Skanaluminum.

    Google Scholar 

  27. Emadi, D., L.V. Whiting, V.Y. Gertsman, M. Sahoo, R. MacKay, and G.E. Byczynski. 2006. Effect of tin on the mechanical properties of aluminum 319 alloy. AFS Transactions 114: 263.

    Google Scholar 

  28. Gauthier, J., and F. Samuel. 1995. Tensile properties and fraction behaviour of solution heat treated 319.2 Al automotive alloy. AFS Transactions 103: 849–855.

    Google Scholar 

  29. Anson, J.P., and J.E. Gruzleski. 1999. A quantitative evaluation of the effect of hydrogen content on the relative amounts of shrinkage and gas microporosity in a cast Al–7% Si foundry alloy. AFS Transactions 107: 456–467.

    Google Scholar 

  30. Dahle, A.K. 1996. Mushy zone properties and castability of aluminum alloys. PhD Thesis. Norwegian University of Science and Technology.

    Google Scholar 

  31. Vander Voort, George F. 1984. Metallography, principles and practice. Materials Park: ASM International.

    Google Scholar 

  32. Sokolowski, J., C. Kierkus, B. Brosnan, and W. Evans. 2000. Formation of insoluble Ti (Al, Si) 3 crystals in 356 alloy castings and their sedimentation in foundry equipment: Causes, effects and solutions. Transactions of the American Foundrymen’s Society 108: 491–496.

    Google Scholar 

  33. Davis, J.R. 1996. ASM specialty handbook: Aluminum and aluminum alloys. Materials Park: ASM International.

    Google Scholar 

  34. Gustafsson, G., T. Thorvaldsson, and G.L. Dunlop. 1986. The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys. Metallurgical Transactions A 17 (1): 45–52.

    Article  Google Scholar 

  35. Kanicki, D.P. 1994. Changing casting demands shape Ford’s new foundry. Modern Casting 84 (9): 24–27.

    Google Scholar 

  36. Mocarski, S.J., G.V. Scarich, and K.C. Wu. 1991. Effect of hot isostatic pressure on cast aluminum airframe components. American Foundrymen’s Society, Inc.(USA) 99: 77–81.

    Google Scholar 

  37. Reinhart, T. 1994. Characterization of Alloy D357.0-T6. Anaheim: AEROMAT.

    Google Scholar 

  38. Mitrasinovic, A., F.C. Robles Hernandez, M. Djurdjevic, and J.H. Sokolowski. 2006. On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis. Materials Science and Engineering A 428 (1): 41–46.

    Article  Google Scholar 

  39. Sigworth, G., S. Shivkumar, and D. Apelian. 1989. The influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys. AFS Transactions 98: 811–823.

    Google Scholar 

  40. Anson, J.P., M. Stucky, and J. Gruzleski. 2000. Effect of modification on the growth of microporosity during the solidification of aluminum–7% silicon foundry alloy. AFS Transactions 108: 611–623.

    Google Scholar 

  41. Fuoco, R., and E.R. Correa. 1999. Characterization of some types of oxide inclusions in aluminum alloy castings. Philadelphia: AFS Castexpo.

    Google Scholar 

  42. La-Orchan, W., M.H. Mulazimoglu, X.G. Chen, and J.E. Gruzleski. 1995. Quantification of the reduced pressure test. AFS Transactions 103: 565–574.

    Google Scholar 

  43. Crepeau, P.N. 1995. Molten aluminium contamination: Gas, inclusions and dross. In 4th international conference on molten aluminium processing. Orlando.

    Google Scholar 

  44. Caceres, C.H., M.B. Djurdjevic, T.J. Stockwell, and J.H. Sokolowski. 1999. The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys. Scripta Materialia 40 (5): 631–637.

    Article  Google Scholar 

  45. Chai, G. 1994. Dendrite coherency during equiaxed solidification in aluminium alloys. PhD Thesis. Stockholm University.

    Google Scholar 

  46. Dupuis, C., Z. Wang, J.P. Martin, and A. Allard. 1992. An analysis of factors affecting the response of hydrogen determination techniques for aluminum alloys. Light Metals 27: 1055–1067.

    Google Scholar 

  47. Edwards, G.A., G.K. Sigworth, C.H. Cáceres, D.H. St John, and J. Barresi. 1997. Microporosity formation in Al-Si-Cu-Mg casting alloys. Transactions of the American Foundrymen’s Society 105: 809–818.

    Google Scholar 

  48. Emadi, D. 1995. Porosity formation in Sr-modified Al-Si alloys. PhD, Department of Mining and Metallurgical Engineering. PhD Thesis, McGill University.

    Google Scholar 

  49. Tynelius, K.E. 1992. A parametric study of the evolution of microporosity in Al-Si foundry alloys. PhD, PhD Thesis. Drexel University.

    Google Scholar 

  50. Mackay, R.I. 2003. Development of a new durable Al-Si alloy for the next generation of engine block casting. Ph.D., PhD Thesis. University of Windsor.

    Google Scholar 

  51. Mackay, R., and G. Byczynski. 2011. The use of the Weibull statistical method to assess the reliability of cast aluminum engine blocks made from different casting processes. In Shape casting: 4th international symposium, 191–198. John Wiley & Sons, Inc.

    Google Scholar 

  52. Arnberg, L., L. Backerud, and G. Chai. 1996. Solidification characteristics of aluminum alloys. Vol. 3. Dendrite coherency. 247. AFS/Skanaluminum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robles Hernandez, F.C., Herrera Ramírez, J.M., Mackay, R. (2017). Principles of Solidification. In: Al-Si Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-58380-8_8

Download citation

Publish with us

Policies and ethics