Skip to main content

Grey Wolf Optimizer in Design Process of Stable Neural Controller – Theoretical Background and Experiment

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

  • 1245 Accesses

Abstract

This article deals with an adaptive neural controller applied for a nonlinear plant with time-varying parameters. The structure of the controller is based on Radial Basis Function Neural Network. The output part of the controller (weights) is modified in several iterations of the control structure. In this application, the coefficients of the Gaussian functions are constant (it means the centers and width). The relevance of proper selection of those values is presented in tests performed for a real plant (an electrical drive). Moreover, for optimization of this part of the controller the metaheuristic – Grey Wolf Optimizer – algorithm was applied. The centers were selected in a clustering process. The synthesis of the controller includes stability analysis (using the Lyapunov method). The content of this article can be divided into two basic parts, the first shows theoretical considerations and the second is related to the experimental tests of the analyzed neural controller (executed in a laboratory, for the drive with 0.5 kW nominal power, using dSPACE card).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., Yan, H.-S.: Identification and adaptive multi-dimensional Taylor network control of single-input single-output non-linear uncertain time-varying systems with noise disturbances. IET Control Theory Appl. 13(6), 841–853 (2019)

    Article  MathSciNet  Google Scholar 

  2. You, F., Chen, N., Zhu, Z., Cheng, S., Yang, H., Jia, M.: Adaptive fuzzy control for nonlinear state constrained systems with input delay and unknown control coefficients. IEEE Access 7, 53718–53730 (2019)

    Article  Google Scholar 

  3. Mazenc, F., Niculescu, S.-I., Bekaik, M.: Stabilization of time-varying nonlinear systems with distributed input delay by feedback of plant’s state. IEEE Trans. Autom. Control 58(1), 264–269 (2013)

    Article  MathSciNet  Google Scholar 

  4. Louarroudi, E., Pintelon, R., Lataire, J.: Nonparametric tracking of the time-varying dynamics of weakly nonlinear periodically time-varying systems using periodic inputs. IEEE Trans. Instrum. Meas. 61(5), 1384–1394 (2012)

    Article  Google Scholar 

  5. Qi, W., Zong, G., Karimi, H.R.: Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans. Autom. Control 65(1), 361–368 (2020)

    Article  MathSciNet  Google Scholar 

  6. Hekimoğlu, B.: Optimal tuning of fractional order PID controller for dc motor speed control via chaotic atom search optimization algorithm. IEEE Access 7, 38100–38114 (2019)

    Article  Google Scholar 

  7. Yu, H., Xie, T., Paszczynski, S., Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Industr. Electron. 58(12), 5438–5450 (2011)

    Article  Google Scholar 

  8. Wang, H., Liu, P.X., Li, S., Wang, D.: Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)

    Article  MathSciNet  Google Scholar 

  9. San, P.P., Ren, B., Ge, S.S., Lee, T.H., Liu, J.-K.: Adaptive neural network control of hard disk drives with hysteresis friction nonlinearity. IEEE Trans. Control Syst. Technol. 19(2), 351–358 (2011)

    Article  Google Scholar 

  10. Pajchrowski, T., Zawirski, K., Nowopolski, K.: Neural speed controller trained online by means of modified RPROP algorithm. IEEE Trans. Industr. Inf. 11(2), 560–568 (2015)

    Article  Google Scholar 

  11. Pajchrowski, T.: Porównanie struktur regulacyjnych dla napędu bezpośredniego z silnikiem PMSM ze zmiennym momentem bezwładności i obciążenia. Przegląd Elektrotechniczny 94(5), 133–138 (2018)

    Google Scholar 

  12. Kaminski, M., Orlowska-Kowalska, T.: Adaptive neural speed controllers applied for a drive system with an elastic mechanical coupling - a comparative study. Eng. Appl. Artif. Intell. 45, 152–167 (2015)

    Article  Google Scholar 

  13. Yang, X., Li, Y., Sun, Y., Long, T., Sarkar, T.K.: Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation. IEEE Trans. Antennas Propag. 66(6), 3097–3107 (2018)

    Article  Google Scholar 

  14. Raitoharju, J., Kiranyaz, S., Gabbouj, M.: Training radial basis function neural networks for classification via class-specific clustering. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2458–2471 (2016)

    Article  Google Scholar 

  15. Calvini, M., Carpita, M., Formentini, A., Marchesoni, M.: PSO-based self-commissioning of electrical motor drives. IEEE Trans. Industr. Electron. 62(2), 768–776 (2015)

    Article  Google Scholar 

  16. Sun, X., Hu, C., Lei, G., Guo, Y., Zhu, J.: State feedback control for a PM hub motor based on gray wolf optimization algorithm. IEEE Trans. Power Electron. 35(1), 1136–1146 (2019)

    Article  Google Scholar 

  17. Premkumar, K., Manikandan, B.V.: Speed control of brushless DC motor using BAT algorithm optimized adaptive neuro-fuzzy inference system. Appl. Soft Comput. 32, 403–419 (2015)

    Article  Google Scholar 

  18. Szczepanski, R., Tarczewski, T., Grzesiak, L.M.: Adaptive state feedback speed controller for PMSM based on artificial bee colony algorithm. Appl. Soft Comput. 83, 1–12 (2019)

    Article  Google Scholar 

  19. Ma, H., Wang, T., Li, Y., Meng, Y.: A time picking method for microseismic data based on LLE and improved PSO clustering algorithm. IEEE Geosci. Remote Sens. Lett. 15(11), 1677–1681 (2018)

    Article  Google Scholar 

  20. Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974 (2010)

    Article  Google Scholar 

  21. Wang, Z., Hu, C., Zhu, Y., He, S., Yang, K., Zhang, M.: Neural network learning adaptive robust control of an industrial linear motor-driven stage with disturbance rejection ability. IEEE Trans. Industr. Inf. 13(5), 2172–2183 (2017)

    Article  Google Scholar 

  22. Gao, J., Proctor, A., Bradley, C.: Adaptive neural network visual servo control for dynamic positioning of underwater vehicles. Neurocomputing 167, 604–613 (2015)

    Article  Google Scholar 

  23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  24. Orlowska-Kowalska, T., Szabat, K., Jaszczak, K.: The influence of parameters and structure of PI-type fuzzy-logic controller on DC drive system dynamics. Fuzzy Sets Syst. 131(2), 251–264 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kaminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaminski, M. (2020). Grey Wolf Optimizer in Design Process of Stable Neural Controller – Theoretical Background and Experiment. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_59

Download citation

Publish with us

Policies and ethics