Skip to main content

Modeling of Incident Waves Near the Ship’s Hull (Application of Autoregressive Approach in Problems of Simulation of Rough Seas)

  • Chapter
  • First Online:
Contemporary Ideas on Ship Stability

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 119))

Abstract

This chapter introduces the basics of the ARMA (Autoregressive Moving Average) model of short-crested wind waves . The model consists of an autoregressive component for temporal dependence and evolution and a two-dimensional moving average component for spatial dependence and propagation. A brief description of the validation of the model is given with special emphasis on the analysis of the dispersion relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belenky, V. (2011) “On Self-Repeating Effect in Reconstruction of Irregular Waves” Chapter 33 of Contemporary Ideas on Ship Stability, Neves, M.A.S., et al. (eds), Springer, ISBN 978-94-007-1481-6 pp. 589–598.

    Google Scholar 

  • Box, G. E. P., G. M. Jenkins & G. C. Reinsel (2008) Time series analysis: Forecasting and control, 4th Edition. Wiley, xx + 746 p.

    Google Scholar 

  • Bukhanovsky, A.V., Degtyarev, A.B., Lopatukhin, L.I., Rozhkov, V.A. (1998) “Probabilistic modeling of sea wave climate”. Izvestiya - Atmospheric and Ocean Physics. Vol 34, No 2, pp. 235–239.

    Google Scholar 

  • Boukhanovsky A., V. Rozhkov & A. Degtyarev (2001) Peculiarities of Computer Simulation and Statistical Representation of Time-Spatial Metocean Fields. In: Computational Science - ICCS, LNCS 2073, Springer, part I, pp. 463–472.

    Google Scholar 

  • Davidan, I. N., L. I. Lopatuhin & V. A. Rozhkov (1978) Wind sea as a probabilistic hydrodynamic process. Leningrad, Gidrometeoizdat (in Russian).

    Google Scholar 

  • Degtyarev, A., Boukhanovsky, A. (1995) On the Estimation of the Motion Stability in Real Seas. Proc. Intl Symp. Ship Safety in a Seaway: Stability, Maneuverability, Nonlinear Approach, Kaliningrad, Vol. 2, Paper 8, 10 p.

    Google Scholar 

  • Degtyarev, A., (2011) “New Approach to Wave Weather Scenarios Modeling” Chapter 34 of Contemporary Ideas on Ship Stability Neves, M.A.S., et al. (eds), Springer, ISBN 978-94-007-1481-6 pp. 599–617.

    Google Scholar 

  • Degtyarev, A.B., Reed, A.M. (2013) “Synoptic and short-term modeling of ocean waves” Intl. Shipbuilding Progress Vol. 60 pp. 523–553.

    Google Scholar 

  • Degtyarev, A., Gankevich, I. (2015) “Hydrodynamic pressure computation under real sea surface on basis of autoregressive model of irregular waves”. Physics of Particles and Nuclei Letters, Vol. 12, No. 3, pp. 389–391.

    Article  Google Scholar 

  • Gankevich, I., Degtyarev, A. (2018) Simulation of standing and propagating sea waves with three-dimensional ARMA model. In: Velarde M., Tarakanov R., Marchenko A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_18.

    Chapter  Google Scholar 

  • Gurgenidze, A. T. & Y. A. Trapeznikov (1988) Probabilistic model of wind waves. In: Theoretical foundations and methods of calculating wind waves. Leningrad, Gidrometeoizdat, pp. 8–23.

    Google Scholar 

  • Longuet-Higgins, M. S. (1962) The statistical analysis of a random, moving surface. Phil. Trans. Royal Soc. London. Series A, Mathematical and Physical Sciences, Vol. 249, No. 966, pp. 321–387.

    Article  MathSciNet  Google Scholar 

  • Maddala, G. S. (1971) Generalized least squares with an estimated variance covariance matrix. Econometrica, Vol. 39, No. 1, pp. 23–33.

    Article  MathSciNet  Google Scholar 

  • Rosenblatt, M. A (1957) Random model of the sea surface generated by the hurricane. J. Math., No. 6, p. 235–246.

    Google Scholar 

  • Rozhkov, V. A. & Y. A. Trapeznikov (1990) Probabilistic models of oceanographic processes. Leningrad, Gidrometeoizdat (in Russian).

    Google Scholar 

  • Spanos, P. D. (1983) ARMA Algorithms for Ocean Wave Modeling. J. Energy Resources Technology, Trans. ASME, Vol. 105 pp. 300–309.

    Article  Google Scholar 

  • St. Denis, M. & W. J. Pierson (1953) On the motion of ships in confused seas. Trans. SNAME, Vol. 61, pp. 280–354.

    Google Scholar 

  • Sveshnikov A. A. (1959) Determination of the probability characteristics of three-dimensional sea waves. Math. Akad. Mech. and Engin., No. 3, pp. 32–41.

    Google Scholar 

  • Walker, G. (1931) On Periodicity in Series of Related Term. Proc. Royal Soc. London, Ser. A, Vol. 131, pp. 518–532.

    Article  Google Scholar 

  • Yule G. U. (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Phil. Trans. Royal Soc. London, Ser. A, Vol. 226, pp. 267–298.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Degtyarev’s work was supported by RFBR grants N 16-07-00886, 17-29-04288, project of St.Petersburg State University (id 28612502) and US Office of Naval Research Global Visiting Scientist Program under Dr. Woei-Min Lin. Dr. Paul Hess of ONR supported Dr. Reed’s on this effort. This is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Degtyarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Degtyarev, A.B., Reed, A.M., Mareev, V. (2019). Modeling of Incident Waves Near the Ship’s Hull (Application of Autoregressive Approach in Problems of Simulation of Rough Seas). In: Belenky, V., Spyrou, K., van Walree, F., Almeida Santos Neves, M., Umeda, N. (eds) Contemporary Ideas on Ship Stability. Fluid Mechanics and Its Applications, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-00516-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00516-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00514-6

  • Online ISBN: 978-3-030-00516-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics