Skip to main content

Synthesis of Fluorine-18 Labeled Compounds for Brain Imaging

  • Chapter
Chemists’ Views of Imaging Centers

Abstract

The use of radiotracers labeled with the positron-emitting radionuclides carbon-11, nitrogen-13, oxygen-15 and fluorine-18 for studying alterations of physiologic and chemical processes that underlie the onset and progression of brain disorders in conjunction with the medical imaging technique positron emission tomography (PET) has been well documented1,2. The hallmark of PET is that it permits the use of positron emitting isotopes of the elements carbon, nitrogen, oxygen and fluorine (a hydrogen or hydroxyl substitute) that are the building blocks of the biochemicals that regulate and sustain biologic processes. The role positron labeled radiotracers has played in basic research and diagnostic nuclear medicine has experienced a rapid growth over the past decade due primarily to the development of a new generation of medical cyclotrons.3–5 These machines are computer-controlled, compact, self-shielded, moderate energy (11 to 18 MeV) accelerators designed to support either a University based innovative research or a clinical diagnostic program located at moderate sized (600–1000 bed) medical centers. These single or dual particle, negative or positive ion, isochronous accelerators are capable of producing nitrogen-13, fluorine-18, carbon-11 and oxygen-15 in sufficient quantities, 0.2 to 2.0 Ci (Table 1), for the labeling of radiotracers by currently available synthetic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Phelps, J.C. Mazziotta, and S.C. Huang, Study of cerebral function with positron computed tomography, J. Cereb. Blood Flow Metab. 2:113–162 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. M.E. Phelps and J.C. Maziotta, Positron emission tomography brain function and biochemistry, Science 228:799–809 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. A.P. Wolf and W.B. Jones, Cyclotrons for biomedical radioisotope production, Radiochim. Acta. 34:1–7 (1983).

    CAS  Google Scholar 

  4. J.R. Barrio, G. Bida, N. Satyamuithy and et al, A mini cyclotron based technology for the production of positron-emitting labeled radiopharmaceuticals, in: “The Metabolism of the Human Brain Studied with Positron Emission Tomography,” Greitz, et al, eds., Raven Press, New York, pp 113–121 (1986).

    Google Scholar 

  5. H.G. Jacobson, Cyclotrons and radiopharmaceuticals in positron emission tomography. Council on scientific affairs. Report of the positron emission tomography panel, JAMA 259:1854–1860 (1988).

    Article  CAS  Google Scholar 

  6. M.E. Phelps, S.C. Huang, E.J. Hoffman, C. Selin,and D.E. Kuhl, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyglucose: validation of the method. Ann. Neurol. 6:371–388 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. M. Reivich, A. Alavi, A.P. Wolf, J.S. Fowler, J. Russel, C. Arnett, C.Y. Shiue, H. Atkins, A. Anand, R. Dann, and J.H. Greenberg, Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxy glucose, J. Cereb. Blood Flow Metab. 5:179–192 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. K.J. Kearfott, D.R. Elmaleh, M.M. Goodman, J.A. Correia, N.M. Alpert, R.H. Ackerman, G.L. Brownell, and W.H. Strauss, Comparison of 2-and 3–18F-Fluoro-deoxy-D-glucose for studies of tissue of tissue metabolism, International Journal of Nuclear Biology 1(1): 15–22 (1984).

    Article  Google Scholar 

  9. A. Luxen, N. Satyamurthy, G.T. Bida, and J.R. Barrio, Stereospecific approach to the synthesis of [18F]2- deoxy-2-fluoro-D-mannose, Appl. Radiat. Isot. 37:409 (1986).

    Article  CAS  Google Scholar 

  10. K. Hamacher, H.H. Coenen, and G. Stocklin, Efficient stereospecific synthesis of no carrier-added 2-[18F]- fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution, J. Nucl. Med. 7:235–238 (1986).

    Google Scholar 

  11. 11.J. Engel, D.E. Kuhl, and M.E. Phelps, Patterns of human local cerebral glucose metabolism during epileptic seizures, Science 218(4567):64–66 (1982).

    Article  PubMed  Google Scholar 

  12. G. DiChiro, R. De Lapaz, B. Smith, et al, J.Cereb. Blood Flow Metab. 1:S11-S-12 (1981).

    Google Scholar 

  13. F. Fazekas, A. Alavi, J.B. Chawluk, R.A. Zimmerman, D. Hackney, L. Bilaniuk, M. Rosen, W.M. Alves, H.I. Hurtig, D.G. Jamieson, et al., Comparison of CT, MR and PET in Alzheimer’s dementia and normal aging, J. Nucl. Med. 30(10): 1607–1615 (1989).

    PubMed  CAS  Google Scholar 

  14. E.M. Bessell, A.B. Foster, and J.H. Westwood, Biochem. J. 128:199–204 (1972).

    PubMed  CAS  Google Scholar 

  15. M.M. Goodman, G.W. Kabalka, and C.P.D. Longford, Synthesis of fluorine labeled 4-fluoro-4-deoxy-D- glucose as a potential brain, heart and tumor imaging agent, in: “Proceedings, Ninth International Symposium on Radiopharmaceutical Chemistry,” Paris, France, 568–569, (April 6–10, 1992).

    Google Scholar 

  16. T.G. Bidder, Hexose translocation across the blood-brain interface: configurational aspects, J. Neurochem. 15:867–874 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. W.M. Partridge and W.H. Olendorf, Kinetics of blood-brain barrier transport of hexoses, Biochem. Biophysics Acta. 382:377–392 (1975).

    Article  Google Scholar 

  18. A.L. Betz, J. Gsejtey, and G.W. Goldstein, Hexose transport and phosphorylation by capillaries isolated from rat brain, Am. J. Physiol. 236:C96–C102 (1979).

    Google Scholar 

  19. G. Kloster, C. Muller-Platz, and P. Laufer, 3-[11C]-Methyl-D-Glucose, a potential agent for regional cerebral glucose utilization studies: Synthesis, chromatography and tissue distribution studies in mice, J. Labeled Cmpd. Radiopharm. 18:855–863 (1981).

    Article  CAS  Google Scholar 

  20. D.J. Brooks, A.A. Beaney, A. Lammerstsma, S. Herold, D.R. Turton, S.K. Luthra, R.S.J. Frackowiak, D.G.T. Thomas, J. Marshall, and T. Jones, Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumours studied using [11C]3-O-methyl-D-glucose and positron emission tomography, J. Cereb. Blood Flow Metab. 6:230–239 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. DJ. Brooks, J.S.R. Gibbs, S. Herold, D.R. Turton, S.K. Luthra, D.G.T. Thomas, S.R. Bloom, and T. Jones, Regional cerebral glucose transport in insulin-dependent diabetic patients studied using [11C]3–0- methyl-D-glucose and positron emission tomography J. Cereb. Blood Flow Metab. 6:240–244 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. T.D. Reisine, J.Z. Fields, H.I. Yamamura, E.D. Bird, E. Spokes, P.S. Schreiner, and S.J. Enna, Neurotransmitter receptor alterations in Parkinson’s disease, Life Science. 21:335–344 (1977).

    Article  CAS  Google Scholar 

  23. P. Seeman and Tardive Dyskinesia, Dopamine receptors and neurologic damage to cell membranes, J. Clin. Pyschopharmacol. 8(suppl):35–95 (1988).

    Google Scholar 

  24. S.H. Snyder, Dopamine receptors, Neuroleptics and Schizophrenia, Am. J. Psychiatry. 138:460–464 (1981).

    PubMed  CAS  Google Scholar 

  25. F.I. Carroll, A.H. Lewin, J.W. Boja, M.J. Kuhar, Cocaine receptor: Biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter, J. Med. Chem. 35:969–981 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. M.M. Goodman, G.W. Kabalka, T.L. Collier, and C.P.D. Longford, Radioiodinated 2ß-carbomethoxy-3ß-(4-chlorophenyl)-8-(3E-and 3Z-iodopropen-2-yl)nortropanes. Synthesis of potential radioligands for mapping cocaine receptor sites by SPECT, J. Nucl. Med. (5)33:890(1992).

    Google Scholar 

  27. M.M. Goodman, M.P. Kung, and H.F. Kung, Unpublished results.

    Google Scholar 

  28. R.H. Kline, J. Wright, A.J. Eshleman, K.M. Fox, and M.E. Eldefrawi, Syntheseis of 3-carbamoylecogonine methyl ester analogues as inhibitors of cocaine binding and dopamine uptake, J. Med. Chem. 34:702–705 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. T.L. Collier, M.M. Goodman, G.W. Kabalka, and C.P.D. Longford, Rapid microwave radiofluorination of (lR-2-exo-3-exo)-2ß-carbomethoxy-8-azabicyclo[3.2.1]octyl-3-N-(4’-[18F]fluoro-3’- nitrophenyl)carbamate. A potential PET cocaine receptor imaging agent, J. Nucl. Med. 33(5): 1025 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodman, M.M., Kabalka, G.W., Longford, D., Collier, T.L., Gotsick, T. (1995). Synthesis of Fluorine-18 Labeled Compounds for Brain Imaging. In: Emran, A.M. (eds) Chemists’ Views of Imaging Centers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9670-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9670-4_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9672-8

  • Online ISBN: 978-1-4757-9670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics