Skip to main content

RT-PCR

Quantitative and Diagnostic PCR in the Analysis of Gene Expression

  • Chapter
Molecular Diagnostics

Part of the book series: Pathology and Laboratory Medicine ((PLM))

  • 271 Accesses

Abstract

The ability to measure RNA levels quantitatively is crucial to the study of gene expression. Northern blots, dot/slot blots, and nuclease protection assays are methods traditionally used for analysis of mRNA expression. These methods, however, require large quantities of RNA and often lack the needed sensitivity. Northern blotting, probably the most widely used method for characterizing RNA, requires 5–10 µg of purified poly(A)-mRNA and has a detection limit of approx 106–107 mRNA copies. Similarly, solution assays, such as RNase protection or S 1 nuclease, require 0.1–1 µg of purified poly(A)-mRNA and have detection limits of approx 105–106 mRNA copies (1). Thus, the required quantities of purified RNA make these methods impractical for many investigators because of the nature of the systems under investigation. For measuring low-abundance transcripts or working with limited amounts of material, the RT-PCR* technique is an excellent alternative to classical blotting and solution hybridization assays (2). RT-PCR couples the tremendous DNA amplification powers of the PCR technique with the ability of RT to reverse transcribe small quantities of total RNA (1 ng or less) into cDNA. Using total cellular RNA rather that purified poly(A)mRNA reduces the possibility of losing messages during the purification process and allows the use of very small quantities of starting material. For example, methods already exist for performing PCR on a single cell (3,4). Other advantages of this technique are its versatility, sensitivity, rapid turnaround time, and the ability to compare multiple samples simultaneously. Although RT-PCR techniques are mostly semiquantitative, progress is being made in the development of several quantitative methods (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shuldiner, A. R. and Huang, Z. Reducing false positives with RNA template-specific PCR (RS-PCR), in Reverse Transcriptase PCR, Larrick, J. W. and Siebert, P. S., eds., Ellis Horwood, London, pp. 50–60, 1995.

    Google Scholar 

  2. Saiki, R., Scharf S., Faloona F., Mullis, K., Horn, G., Erlich, H., and Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia Science 230:1350–1354, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Lambolez, B., Audinat, E., Bochet, P., and Rossier, J. RT-PCR on single cell after patchclamp recording, in Reverse Transcriptase PCR, Larrick, J. W. and Siebert, P. S., eds., Ellis Horwood, London, pp. 21–49, 1995.

    Google Scholar 

  4. Tong, J., Bendahhou, S., Chen, H., and Agnew, W. S. A simplified method for single-cell RT-PCR that can detect and distinguish genomic DNA and mRNA transcripts. Nucleic Acids Res. 22:3253–3254, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Ferre, F., Marchese, A., Pezzoli, P., Griffin, S., Buxton, E., and Boyer, V. Quantitative PCR: An overview, in The Polymerase Chain Reaction, Mullis, K. B., Ferre, F., and Gibbs, R. A., eds., Birkhauser, Boston, pp. 67–88, 1994.

    Chapter  Google Scholar 

  6. Blumberg, D. D. Equipping a laboratory. Methods Enzymol. 152:3–20, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Sambrook J., Fritsch E. F., and Maniatis T., eds. Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989.

    Google Scholar 

  8. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases. Biochemistry 18:5294–5299, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Chomcznski, P. and Sacchi, N. Single-step method of RNA isolation by acid quanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159, 1987.

    Google Scholar 

  10. Kotewicz, M. L., D‘Alessio, J. M., Driftmier, K. M., Blodgett, K. P., and Gerard, G. F. Cloning and overexpression of Maloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene 35:249–258, 1985.

    CAS  Google Scholar 

  11. Gerard, G. F. Comparison of cDNA synthesis by avian and cloned murine reverse transcriptase. Focus 7:1–3, 1985.

    Google Scholar 

  12. Kotewocz, M. L., Sampson, C. M., D‘Alessio, J. M., and Gerard, G. F. Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. 16:265–277, 1988.

    Article  Google Scholar 

  13. Gerard, G. F., D‘Alessio, J. M., and Kotewiz, M. L. cDNA synthesis by cloned Moloney murine leukemia virus reverse transcriptase lacking RNAase H activity. Focus 11:66–69, 1989.

    Google Scholar 

  14. Gerard, G. F. and D‘Alessio, J. M. Reverse transcriptase (EC 2.7.7.49). The use of cloned Moloney leukemia virus reverse transcriptase to synthesize DNA from RNA, in Enzymes of Molecular Biology, Methods in Molecular Biology, vol. 16, Burrell, M. M., ed., Humana, Totowa, NJ, pp. 73–92, 1993.

    Google Scholar 

  15. Borson, N. D., Sato, W. L., and Drewes, L. R. A lock-docking oligo(dT) primer for 5‘ and 3‘ RACE PCR. PCR Methods Appl. 2:144–148, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Innis, M. A., Gelfand, D. H., Snisky, J. J., White, T. J., eds. PCR Protocols: A Guide to Methods and Applications. Academic, San Diego, 1990.

    Google Scholar 

  17. Block, W. A Biochemical perspective of the polymerase chain reaction. Biochemistry 30:2735–2747, 1991.

    Article  Google Scholar 

  18. Pallansch, L., Beswick, H., Talian, J., and Zelenka, O. Use of an RNA folding algorithm to choose regions for amplification by the polymerase chain reaction. Anal. Biochem. 185:57–62, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J., and Wallace, R. B. Laboratory methods: the effect of temperature and oligo nucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10:233–238, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Lowe, T., Sharefkin, J., Yang, S. Q., and Diffenbach, C. W. A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Res. 18:1757–1761, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Sakuma, Y. and Nishigaki, K. Computer prediction of general PCR products based on dynamical solution structures of DNA. J. Biochem. 116:736–741, 1994.

    PubMed  CAS  Google Scholar 

  22. Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reactionamplified DNA. Proc. Natl. Acad. Sci. USA 85:9436–9440, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Casanova, J. L., Pannetier, C., Jaulin, C., and Kourilsky, P. Optimal conditions for directly sequencing double-stranded PCR products with Sequenase. Nucleic Acids Res. 18:4028, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Bachman, B., Luke, W., and Hunsmann, G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 18:1309, 1990.

    Article  Google Scholar 

  25. Becker-Andre, M. Evaluation of absolute mRNA levels by polymerase chain reactionaided transcript titration assay (PATTY), in Reverse Transcriptase PCR, Larrick, J. W. and Siebert, P. S., eds., Ellis Horwood, London, pp. 121–149, 1995.

    Google Scholar 

  26. Larrick, J. W. and Siebert, P. S., eds. Reverse Transcriptase PCR. Ellis Horwood, London, 1995.

    Google Scholar 

  27. Kwok, S. and Higuchi, R. Avoiding false positives with PCR. Nature 339:237–238, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Sarkar, G. and Sommer, S. S. Shedding light on PCR contamination. Nature 343:27, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. O‘Dowd, D. K., Gee, J. R., and Smith, M. A. Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J. Neurosci. 15:4005–4012, 1995.

    PubMed  Google Scholar 

  30. Chelly, J., Kaplan, J. C., Maire, P., Gautron, S., and Kahn, A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333:858–860, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Dostal, D. E., Rothblum, K. N., and Baker, K. M. An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues. Anal. Biochem. 223:239–250, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Frohman, M. A., Dush, M. K., and Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85:8998–9002, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Ohara, O. Dorit, R. L., and Gilbert, W. Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 86:6883–6887, 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Loh, E. Y., Elliott, J. F., Cwirla, S., Lanier, L. L., and Davis, M. M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243:217–220, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Chenchik, A., Moqadam, F., and Siebert, P. Marathon cDNA amplification: a new method for cloning full-length cDNAs. CLONTECHniques X:5–8, 1995.

    Google Scholar 

  36. Liang, P. and Pardee, A. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–970, 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Liang, P., Averboukh, L., and Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 21:3269–3275, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Hadman, M., Adam, B. L., Wright, G. L., and Bos, T. J. Modifications to the differential display technique reduce background and increase sensitivity. Anal. Biochem. 226:383– 386, 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Guimaraes, M. J., Lee, F., Zlotnik, A., and McClanahan, T. Differential display by PCR: novel findings and applications. Nucleic Acids Res. 23:1832,1833, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sisk, R.B. (1997). RT-PCR. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2588-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2588-9_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2590-2

  • Online ISBN: 978-1-4757-2588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics