Skip to main content

Interaction of Embryonic Stem Cells with the Immune System

  • Chapter
  • First Online:
The Immunological Barriers to Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1098 Accesses

Abstract

Embryonic stem (ES) cells interact with the immune system in unique ways. Immune interactions of ES cells and tumor formation appear to be reciprocal functions—the less immunity ES cells provoke, the greater the risk of tumor formation. Knowledge of the interaction of ES cells and their derivatives with the immune system and their relationship to tumor formation is critical to their potential therapeutic applications to regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujikawa T, Oh SH, Pi L, Hatch HM et al (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791

    Article  PubMed  CAS  Google Scholar 

  2. Koch CA, Platt JL (2003) Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Sem Immunopathol 25:95–117

    Article  CAS  Google Scholar 

  3. Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16:708–712

    Article  PubMed  CAS  Google Scholar 

  4. Platt J, Cascalho M (2010) Transplantation immunology. In: Mulholland M, Lillemoe K, Doherty G, Maier R, Upchurch G, Simeone D (eds) Greenfield’s surgery: scientific principles and practice, 5th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 497–513

    Google Scholar 

  5. Platt JL, Cascalho M, West LJ (2009) Lessons from cardiac transplantation in infancy. Pediatr Transplant 13:814–819

    Article  PubMed  Google Scholar 

  6. Platt JL, Rubinstein P (1997) Mechanisms and characteristics of allograft rejection. In: Sabiston Jr DC, Lyerly HK (eds) Textbook of surgery. The biological basis of modern surgical practice, 15th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  7. Cascalho M, Ma A, Lee S, Masat L et al (1996) A quasi-monoclonal mouse. Science 272:1649–1652

    Article  PubMed  CAS  Google Scholar 

  8. AbuAttieh M, Rebrovich M, Wettstein PJ, Vuk-Pavlovic Z et al (2007) Fitness of cell-mediated immunity independent of repertoire diversity. J Immunol 178:2060–2950

    Google Scholar 

  9. Matzinger P, Bevan MJ (1977) Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol 29:1–5

    Article  PubMed  CAS  Google Scholar 

  10. Felix NJ, Donermeyer DL, Horvath S, Walters JJ et al (2007) Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 8:388–397

    Article  PubMed  CAS  Google Scholar 

  11. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH et al (2001) Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 166:973–981

    PubMed  CAS  Google Scholar 

  12. Snell GD (1980) The major histocompatibility complex: its evolution and involvement in cellular immunity. Harvey Lect 74:49–80

    PubMed  CAS  Google Scholar 

  13. Dvorak HF, Mihm MC Jr, Dvorak AM, Barnes BA et al (1979) Rejection of first-set skin allografts in man. The microvasculature is the critical target of the immune response. J Exp Med 150:322–337

    Article  PubMed  CAS  Google Scholar 

  14. Pober JS, Bothwell AL, Lorber MI, McNiff JM et al (2003) Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse. Springer Sem Immunopathol 25:167–180

    Article  CAS  Google Scholar 

  15. Auchincloss H, Lee R, Shea S, Markowitz JS et al (1993) The role of “indirect” recognition in initiating rejection of skin grafts from major histocompatibility complex class II-deficient mice. Proc Natl Acad Sci U S A 90:3373–3377

    Article  PubMed  CAS  Google Scholar 

  16. Jerne NK (1971) The somatic generation of immune recognition. Eur J Immunol 1:1–9

    Article  PubMed  CAS  Google Scholar 

  17. Chicz RM, Urban RG, Lane WS, Gorga JC et al (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768

    Article  PubMed  CAS  Google Scholar 

  18. João CM, Ogle BM, Gay-Rubenstein C, Platt JL et al (2004) B cell-dependent TCR diversification. J Immunol 172:4709–4716

    PubMed  Google Scholar 

  19. Lombardi G, Sidhu S, Daly M, Batchelor JR et al (1990) Are primary alloresponses truly primary? Int Immunol 2:9–13

    Article  PubMed  CAS  Google Scholar 

  20. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603

    Article  PubMed  CAS  Google Scholar 

  21. Ando K, Hasegawa T, Nakashima I, Mizoguchi K et al (1985) Ontogeny of the transplantation immunity of mice for rejecting ascitic allogeneic tumors. Dev Comp Immunol 9:701–708

    Article  PubMed  CAS  Google Scholar 

  22. Billingham RE, Brent L, Medawar PB, Sparrow EM (1954) Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc Roy Soc Lond 143:43–58

    Article  CAS  Google Scholar 

  23. Hubner K, Fuhrmann G, Christenson LK, Kehler J et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  Google Scholar 

  24. Geijsen N, Horoschak M, Kim K, Gribnau J et al (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  PubMed  CAS  Google Scholar 

  25. West JA, Daley GQ (2004) In vitro gametogenesis from embryonic stem cells. Curr Opin Cell Biol 16:688–692

    Article  PubMed  CAS  Google Scholar 

  26. Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737

    PubMed  CAS  Google Scholar 

  27. Thomson JA, Kalishman J, Golos TG, Durning M et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848

    Article  PubMed  CAS  Google Scholar 

  28. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  29. Shamblott MJ, Axelman J, Wang S, Bugg EM et al (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731

    Article  PubMed  CAS  Google Scholar 

  30. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  PubMed  CAS  Google Scholar 

  31. Smith AG (2001) Embryo-derived stem cells: of mice and men. Ann Rev Cell Dev Biol 17:435–462

    Article  CAS  Google Scholar 

  32. Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development 132:227–233

    Article  PubMed  CAS  Google Scholar 

  33. Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414:92–97

    Article  PubMed  CAS  Google Scholar 

  34. Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl Deutsch Pathol 11:39–82

    Google Scholar 

  35. Jackson E, Brues A (1941) Studies on a transplantable embryoma of the mouse. Cancer Res 1:494–498

    CAS  Google Scholar 

  36. Pierce GB Jr, Dixon FJ Jr, Verney EL (1960) Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 9:583–602

    PubMed  Google Scholar 

  37. Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  38. Finch BW, Ephrussi B (1967) Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc Natl Acad Sci U S A 57:615–621

    Article  PubMed  CAS  Google Scholar 

  39. Runner MN (1947) Development of mouse eggs in the anterior chamber of the eye. Anat Rec 98:1–17

    Article  PubMed  CAS  Google Scholar 

  40. Stevens LC (1968) The development of teratomas from intratesticular grafts of tubal mouse eggs. J Embryol Exp Morphol 20:329–341

    PubMed  CAS  Google Scholar 

  41. Damjanov I, Solter D, Škreb N (1971) Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Wilhelm Roux’ Arch 167:288–290

    Article  Google Scholar 

  42. Solter D, Škreb N, Damjanov I (1970) Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 227:503–504

    Article  PubMed  CAS  Google Scholar 

  43. Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776

    Article  PubMed  CAS  Google Scholar 

  44. Diwan SB, Stevens LC (1976) Development of teratomas from the ectoderm of mouse egg cylinders. J Natl Cancer Inst 57:937–942

    PubMed  CAS  Google Scholar 

  45. Mintz B, Cronmiller C, Custer RP (1978) Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci U S A 75:2834–2838

    Article  PubMed  CAS  Google Scholar 

  46. Eppig J, Kozak L, Eicher E (1977) Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature 269:517–518

    Article  PubMed  CAS  Google Scholar 

  47. Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73

    Article  PubMed  CAS  Google Scholar 

  48. Bernstine EG, Hooper ML, Grandchamp S, Ephrussi B (1973) Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A 70:3899–3903

    Article  CAS  Google Scholar 

  49. Artzt K, Dubois P, Bennett D, Condamine H et al (1973) Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A 70:2988–2992

    Article  PubMed  CAS  Google Scholar 

  50. Evans M (1981) Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture. J Reprod Fertil 62:625–631

    Article  PubMed  CAS  Google Scholar 

  51. Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72:5099–5102

    Article  PubMed  CAS  Google Scholar 

  52. Sherman MI (1975) The culture of cells derived from mouse blastocysts. Cell 5:343–349

    Article  PubMed  CAS  Google Scholar 

  53. Atienza-Samols S, Sherman M (1978) Outgrowth promoting factor for the inner cell mass of the mouse blastocyst. Dev Biol 66:220–231

    Article  PubMed  CAS  Google Scholar 

  54. Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117

    PubMed  CAS  Google Scholar 

  55. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  56. Hodgson DM, Behfar A, Zingman LV, Kane GC et al (2004) Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 287:H471–H479

    Article  PubMed  CAS  Google Scholar 

  57. Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653

    Article  PubMed  Google Scholar 

  58. Yamamoto H, Quinn G, Asari A, Yamanokuchi H et al (2003) Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 37:983–993

    Article  PubMed  CAS  Google Scholar 

  59. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224

    Article  PubMed  CAS  Google Scholar 

  60. Brustle O, Jones KN, Learish RD, Karram K et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    Article  PubMed  CAS  Google Scholar 

  61. Basma H, Soto-Gutiérrez A, Yannam G, Liu L et al (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136:990–999

    Article  PubMed  CAS  Google Scholar 

  62. Burt RK, Verda L, Kim DA, Oyama Y et al (2004) Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 199:895–904

    Article  PubMed  CAS  Google Scholar 

  63. Lumelsky N, Blondel O, Laeng P, Valasco I et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  PubMed  CAS  Google Scholar 

  64. Ariga H, Ohto H, Busch MP, Imamura S et al (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41:1524–1530

    Article  PubMed  CAS  Google Scholar 

  65. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93:705–708

    Article  PubMed  CAS  Google Scholar 

  66. Khosrotehrani K, Bianchi DW (2005) Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118:1559–1563

    Article  PubMed  CAS  Google Scholar 

  67. Srivatsa B, Srivatsa S, Johnson KL, Samura O et al (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 358:2034–2038

    Article  PubMed  CAS  Google Scholar 

  68. Cha D, Khosrotehrani K, Kim Y, Stroh H et al (2003) Cervical cancer and microchimerism. Obstet Gynecol 102:774–781

    Article  PubMed  Google Scholar 

  69. Stevens LC (1962) Testicular teratomas in fetal mice. J Natl Cancer Inst 28:247–267

    PubMed  CAS  Google Scholar 

  70. Stevens LC, Varnum DS (1974) The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 37:369–380

    Article  PubMed  CAS  Google Scholar 

  71. Behfar A, Zingman LV, Hodgson DM, Rauzier JM et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566

    Article  PubMed  Google Scholar 

  72. Nussbaum J, Minami E, Laflamme MA, Virag JA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Article  PubMed  CAS  Google Scholar 

  73. Dressel R, Schindehutte J, Kuhlmann T, Elsner L et al (2008) The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One 3:e2622

    Article  PubMed  Google Scholar 

  74. Xu C, Mao D, Holers VM, Palanca B et al (2000) A critical role for murine complement regulator Crry in fetomaternal tolerance. Science 287:498–501

    Article  PubMed  CAS  Google Scholar 

  75. Koch CA, Jordan CE, Platt JL (2006) Complement-dependent control of teratoma formation by embryonic stem cells. J Immunol 177:4803–4809

    PubMed  CAS  Google Scholar 

  76. Koch CA, Platt JL (2008) Immunosuppression by embryonic stem cells. Stem Cells 26:89–98

    Article  PubMed  CAS  Google Scholar 

  77. Fandrich F, Lin X, Chai GX, Schulze M et al (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178

    Article  PubMed  CAS  Google Scholar 

  78. Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170

    Article  PubMed  CAS  Google Scholar 

  79. Smith CV, Nakajima K, Mixon A, Guzzetta PC et al (1992) Successful induction of long-term specific tolerance to fully allogeneic renal allografts in miniature swine. Transplantation 53:438–444

    Article  PubMed  CAS  Google Scholar 

  80. Magliocca JF, Held IK, Odorico JS (2006) Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev 15:707–717

    Article  PubMed  CAS  Google Scholar 

  81. Priddle H, Jones DR, Burridge PW, Patient R (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824

    Article  PubMed  Google Scholar 

  82. Bonde S, Chan KM, Zavazava N (2008) ES-cell derived hematopoietic cells induce transplantation tolerance. PLoS One 3:e3212

    Article  PubMed  Google Scholar 

  83. Tian L, Catt JW, O’Neill C, King NJ (1997) Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod 57:561–568

    Article  PubMed  CAS  Google Scholar 

  84. Drukker M, Katz G, Urbach A, Schuldiner M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    Article  PubMed  CAS  Google Scholar 

  85. Lampton PW, Crooker RJ, Newmark JA, Warner CM (2008) Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens 72:448–457

    Article  PubMed  CAS  Google Scholar 

  86. Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304

    Article  PubMed  CAS  Google Scholar 

  87. Dressel R, Nolte J, Elsner L, Novota P et al (2010) Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 24:2164–2177

    Article  PubMed  CAS  Google Scholar 

  88. Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A, Skottman H et al (2006) Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 13:712–724

    Article  PubMed  CAS  Google Scholar 

  89. Swijnenburg RJ, Tanaka M, Vogel H, Baker J et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172

    PubMed  Google Scholar 

  90. Bonde S, Zavazava N (2006) Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells 24:2192–2201

    Article  PubMed  CAS  Google Scholar 

  91. Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950

    Article  PubMed  Google Scholar 

  92. Robertson NJ, Brook FA, Gardner RL, Cobbold SP et al (2007) Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A 104:20920–20925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supplemented by grants from the NIH: HL52297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cody A. Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, C.A., Platt, J.L. (2013). Interaction of Embryonic Stem Cells with the Immune System. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_3

Download citation

Publish with us

Policies and ethics