Patterns of Intuition

Musical Creativity in the Light of Algorithmic Composition

  • Gerhard Nierhaus

Table of contents

  1. Front Matter
    Pages i-viii
  2. Gerhard Nierhaus
    Pages 1-6
  3. Composers’ Projects

    1. Front Matter
      Pages 7-7
    2. Elisabeth Harnik, Hanns Holger Rutz, Gerhard Nierhaus
      Pages 9-32
    3. Clemens Nachtmann, Daniel Mayer, Gerhard Nierhaus
      Pages 33-57
    4. Eva Reiter, Hanns Holger Rutz, Gerhard Nierhaus
      Pages 59-84
    5. Clemens Gadenstätter, Daniel Mayer, Thomas Eder, Gerhard Nierhaus
      Pages 85-110
    6. Dimitri Papageorgiou, Daniel Mayer, Gerhard Nierhaus
      Pages 111-139
    7. Katharina Klement, Daniel Mayer, Gerhard Nierhaus
      Pages 141-164
    8. Orestis Toufektsis, Hanns Holger Rutz, Gerhard Nierhaus
      Pages 165-187
    9. Alexander Stankovski, Daniel Mayer, Gerhard Nierhaus
      Pages 189-208
    10. Matthias Sköld, Hanns Holger Rutz, Gerhard Nierhaus
      Pages 209-229
    11. Djuro Zivkovic, Daniel Mayer, Gerhard Nierhaus
      Pages 231-255
    12. Bart Vanhecke, Daniel Mayer, Gerhard Nierhaus
      Pages 257-278
    13. Peter Lackner, Harald Fripertinger, Gerhard Nierhaus
      Pages 279-313
  4. Interdisciplinary Contributions

    1. Front Matter
      Pages 315-315
    2. William Brooks
      Pages 329-347
    3. Sandeep Bhagwati
      Pages 359-377

About this book

Introduction

The present book is the result of a three year research project which investigated the creative act of composing by means of algorithmic composition. Central to the investigation are the compositional strategies of 12 composers, which were documented through a dialogic and cyclic process of modelling and evaluating musical materials. The aesthetic premises and compositional approaches configure a rich spectrum of diverse positions, which is reflected also in the kinds of approaches and methods used. These approaches and methods include the generation and evaluation of chord sequences using genetic algorithms, the application of morphing strategies to research harmonic transformations, an automatic classification of personal preferences via machine learning, and an application of mathematical music theory to the analysis and resynthesis of musical material. The second part of the book features contributions by Sandeep Bhagwati, William Brooks, David Cope, Darla Crispin, Nicolas Donin, and Guerino Mazzola. These authors variously consider the project from different perspectives, offer independent approaches, or provide more general reflections from their respective research fields.

Keywords

Algorithmic Composition Algorithmic Modelling Algorithmic Processes Applied Compositions Artificial Intelligence Automated Music Automating the Creative Process Complex Networks in Music Computer Generated Music Generative Grammars Machine Creativity Mapping Creativity Mathematical Modelling for Creativity Models for Measuring Aesthetics

Editors and affiliations

  • Gerhard Nierhaus
    • 1
  1. 1.University of Music and PerformingInstitute of Electronic Music and AcousticsGrazAustria

Bibliographic information

  • DOI https://doi.org/10.1007/978-94-017-9561-6
  • Copyright Information Springer Science+Business Media Dordrecht 2015
  • Publisher Name Springer, Dordrecht
  • eBook Packages Computer Science
  • Print ISBN 978-94-017-9560-9
  • Online ISBN 978-94-017-9561-6
  • About this book
Industry Sectors
Pharma
Automotive
Chemical Manufacturing
Biotechnology
Electronics
Telecommunications
Energy, Utilities & Environment
Aerospace