Advertisement

Brain functional connectivity correlates of coping styles

  • Emiliano Santarnecchi
  • Giulia Sprugnoli
  • Elisa Tatti
  • Lucia Mencarelli
  • Francesco Neri
  • Davide Momi
  • Giorgio Di Lorenzo
  • Alvaro Pascual-Leone
  • Simone Rossi
  • Alessandro Rossi
Article

Abstract

Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks—namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.

Keywords

Coping fMRI Connectivity Network Resilience 

Notes

Author note

All authors report no conflicts of interest.

References

  1. Adelstein, J. S., Shehzad, Z., Mennes, M., Deyoung, C. G., Zuo, X. N., Kelly, C., … Milham, M. P. (2011). Personality is reflected in the brain’s intrinsic functional architecture. PLoS ONE, 6, e27633.  https://doi.org/10.1371/journal.pone.0027633 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albert, J., López-Martín, S., Tapia, M., Montoya, D., & Carretié, L. (2012). The role of the anterior cingulate cortex in emotional response inhibition. Human Brain Mapping, 33, 2147–2160.  https://doi.org/10.1002/hbm.21347 CrossRefPubMedGoogle Scholar
  3. Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., & Sporns, O. (2009). Modeling the impact of lesions in the human brain. PLoS Computational Biology, 5, e1000408.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bandura, A. (1994). Self-efficacy. In Encyclopedia of human behavior (Vol. 4, pp. 71–81). New York, NY: Academic Press.Google Scholar
  5. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90–101.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance, 34, 537–541.CrossRefGoogle Scholar
  7. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107, 4734–4739.  https://doi.org/10.1073/pnas.0911855107 CrossRefGoogle Scholar
  8. Brousse, G., Arnaud, B., Roger, J. D., Geneste, J., Bourguet, D., Zaplana F., … Jehel L. (2011). Management of traumatic events: Influence of emotion-centered coping strategies on the occurrence of dissociation and post-traumatic stress disorder. Neuropsychiatric Disease and Treatment, 7, 127–133.Google Scholar
  9. Bryant, R. A., & Harvey, A. G. (1996). Initial posttraumatic stress responses following motor vehicle accidents. Journal of Traumatic Stress, 9, 223–234.CrossRefPubMedGoogle Scholar
  10. Bush, G. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222. Retrieved August 12, 2017, from www.ncbi.nlm.nih.gov/pubmed/10827444
  11. Caprara, G. V., Barbaranelli, C., Borgogni, L., & Perugini, M. (1993). The “Big Five Questionnaire”: A new questionnaire to assess the five factor model. Personality and Individual Differences, 15, 281–288.CrossRefGoogle Scholar
  12. Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30, 2313–2335.  https://doi.org/10.1002/hbm.20671 CrossRefPubMedGoogle Scholar
  13. Carver, C. S., Scheier, M. F., & Weintraub, J. K. (1989). Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283.CrossRefPubMedGoogle Scholar
  14. Chang, C.-M., Lee, L.-C., Connor, K. M., Davidson, J. R. T., Jeffries, K., & Lai, T.-J. (2003). Posttraumatic distress and coping strategies among rescue workers after an earthquake. Journal of Nervous and Mental Disorders, 191, 391–398.CrossRefGoogle Scholar
  15. Chiong, W., Wilson, S. M., D’Esposito, M., Kayser, A. S., Grossman, S. N., Poorzand, P., … Rankin, K. P. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136, 1929–1941.  https://doi.org/10.1093/brain/awt066 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Clemens, B., Wagels, L., Bauchmüller, M., Bergs, R., Habel, U., & Kohn, N. (2017). Alerted default mode: Functional connectivity changes in the aftermath of social stress. Scientific Reports, 7, 40180.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2017). Stability and variability of personality networks: A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 12, e0186695.  https://doi.org/10.1371/journal.pone.0186695 Google Scholar
  18. Craske, M. G., Kircanski, K., Zelikowsky, M., Mystkowski, J., Chowdhury, N., & Baker, A. (2008). Optimizing inhibitory learning during exposure therapy. Behaviour Research and Therapy, 46, 5–27.CrossRefPubMedGoogle Scholar
  19. Dazzi, C., Pedrabissi, L., & Santinello, M. (2004). Adattamento italiano delle Scale di Personalità Eysenck per adulti. Organizzazioni Speciali O.S. Retrieved August 1, 2017, from hdl.handle.net/11577/2429135
  20. Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., … Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eysenck, H. J.., & Eysenck, S. B. G. (1975). Manual of the Eysenck Personality Questionnaire. London, UK: Hodder & Stoughton.Google Scholar
  22. Eysenck, S. B. G., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality and Individual Differences, 6, 21–29.CrossRefGoogle Scholar
  23. Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 1664–1671.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Folkman, S., & Lazarus, R. S. (1980). An analysis of coping in a middle-aged community sample. Journal of Health and Social Behavior, 21, 219–239.CrossRefPubMedGoogle Scholar
  25. Folkman, S., & Lazarus, R. S. (1985). If it changes it must be a process: Study of emotion and coping during three stages of a college examination. Journal of Personality and Social Psychology, 48, 150–170.CrossRefPubMedGoogle Scholar
  26. Folkman, S., & Lazarus, R. S. (1988). Coping as a mediator of emotion. Journal of Personality and Social Psychology, 54, 466–475.CrossRefPubMedGoogle Scholar
  27. Galeazzi, A., Goti, F., & Vidotto, G. (1992). Le componenti dell’Eysenck Personality Questionnaire–Revised (EPQ-R). Bolletino di Psicologia Applicata, 202, 13–21.Google Scholar
  28. Genet, J. J., & Siemer, M. (2011). Flexible control in processing affective and non-affective material predicts individual differences in trait resilience. Cognition and Emotion, 25, 380–388.CrossRefPubMedGoogle Scholar
  29. Gleiberman, L. (2007). Repressive/defensive coping, blood pressure, and cardiovascular rehabilitation. Current Hypertension Reports, 9, 7–12. Retrieved July 30, 2017, from https:/www.ncbi.nlm.nih.gov/pubmed/17362665
  30. Goretti, B., Portaccio, E., Zipoli, V., Hakiki, B., Siracusa, G., Sorbi, S., & Amato, M. P. (2010). Impact of cognitive impairment on coping strategies in multiple sclerosis. Clinical Neurology and Neurosurgery, 112, 127–130.CrossRefPubMedGoogle Scholar
  31. Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180–190.CrossRefPubMedGoogle Scholar
  32. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.  https://doi.org/10.1097/WCO.0b013e328306f2c5 CrossRefPubMedGoogle Scholar
  33. Hanson, R. K., Harris, A. J. R., Scott, T.-L., & Helmus, L. (2007). Assessing the risk of sexual offenders on community supervision: The Dynamic Supervision Project (Technical Report 2007-05). Ottawa, ON: Public Safety Canada. Retrieved August 6, 2017, from https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/ssssng-rsk-sxl-ffndrs/index-en.aspx
  34. Harrison, B. J., Pujol, J., Lopez-Sola, M., Hernandez-Ribas, R., Deus, J., Ortiz, H., … Cardoner, N. (2008). Consistency and functional specialization in the default mode brain network. Proceedings of the National Academy of Sciences, 105, 9781–9786.CrossRefGoogle Scholar
  35. Heppner, P. (1988). The problem solving inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  36. Heppner, P. P., Witty, T. E., & Dixon, W. A. (2004). Problem-solving appraisal: Helping normal people lead better lives. Counseling Psychology, 32, 466–472.CrossRefGoogle Scholar
  37. Holz, N. E., Boecker, R., Jennen-Steinmetz, C., Buchmann, A. F., Blomeyer, D., Baumeister, S., … Laucht, M. (2016). Positive coping styles and perigenual ACC volume: Two related mechanisms for conferring resilience? Social Cognitive and Affective Neuroscience, 11, 813–820.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Horn, D. I., Yu, C., Steiner, J., Buchmann, J., Kaufmann, J., Osoba, A., … Walter, M. (2010). Glutamatergic and resting-state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula. Frontiers in Systems Neuroscience, 4, 33.  https://doi.org/10.3389/fnsys.2010.00033 PubMedPubMedCentralGoogle Scholar
  39. Joyce, K. E., Hayasaka, S., & Laurienti, P. J. (2013). The human functional brain network demonstrates structural and dynamical resilience to targeted attack. PLoS Computational Biology, 9, e1002885.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Karatsoreos, I. N., & McEwen, B. S. (2011). Psychobiological allostasis: Resistance, resilience and vulnerability. Trends in Cognitive Sciences, 15, 576–584.CrossRefPubMedGoogle Scholar
  41. Karl, A., Schaefer, M., Malta, L., Dorfel, D., Rohleder, N., & Werner, A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neuroscience & Biobehavioral Reviews, 30, 1004–1031.CrossRefGoogle Scholar
  42. Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 826–837.CrossRefPubMedGoogle Scholar
  43. Kong, F., Hu, S., Wang, X., Song, Y., & Liu, J. (2015a). Neural correlates of the happy life: The amplitude of spontaneous low frequency fluctuations predicts subjective well-being. NeuroImage, 107, 136–145.  https://doi.org/10.1016/j.neuroimage.2014.11.033 CrossRefPubMedGoogle Scholar
  44. Kong, F., Xue, S., & Wang, X. (2016). Amplitude of low frequency fluctuations during resting state predicts social well-being. Biological Psychology, 118, 161–168.CrossRefPubMedGoogle Scholar
  45. Kong, F., Wang, X., Hu, S., & Liu, J. (2015b). Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. NeuroImage, 123, 165–172.CrossRefPubMedGoogle Scholar
  46. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York, NY: Springer.Google Scholar
  47. Lee, H., Ku, J., Kim, J., Jang, D.-P., Yoon, K. J., Kim, S. I., & Kim, J.-J. (2014). Aberrant neural responses to social rejection in patients with schizophrenia. Social Neuroscience, 9, 412–423.CrossRefPubMedGoogle Scholar
  48. Liew, S. L., Santarnecchi, E., Buch, E. R., & Cohen, L. G. (2014). Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Frontiers in Human Neuroscience, 8, 378.  https://doi.org/10.3389/fnhum.2014.00378 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Litman, J. A. (2006). The COPE inventory: Dimensionality and relationships with approach- and avoidance-motives and positive and negative traits. Personality and Individual Differences, 41, 273–284.  https://doi.org/10.1016/j.paid.2005.11.032 CrossRefGoogle Scholar
  50. Lysaker, P. H., Clements, C. A., Plascak-Hallberg, C. D., Knipscheer, S. J., & Wright, D. E. (2002). Insight and personal narratives of illness in schizophrenia. Psychiatry: Interpersonal and Biological Processes, 65, 197–206.CrossRefGoogle Scholar
  51. McEwen, B. S., Gray, J., & Nasca, C. (2015). Recognizing resilience: Learning from the effects of stress on the brain. Neurobiology of Stress, 1, 1–11.  https://doi.org/10.1016/j.ynstr.2014.09.001 CrossRefPubMedGoogle Scholar
  52. McNally, R. J. (2007). Mechanisms of exposure therapy: How neuroscience can improve psychological treatments for anxiety disorders. Clinical Psychology Review, 27, 750–759.  https://doi.org/10.1016/j.cpr.2007.01.003 CrossRefPubMedGoogle Scholar
  53. Mikulincer, M., & Solomon, Z. (1989). Causal attribution, coping strategies, and combat-related post-traumatic stress disorder. European Journal of Personality, 3, 269–284.CrossRefGoogle Scholar
  54. Mirandola, M., & Soresi, S. (1991). Contributo all’adattamento italiano del Problem Solving Inventory di Heppner e Petersen. Applied Psychology Bulletin, 198, 9–18.Google Scholar
  55. Nezu, A. M. (1985). Differences in psychological distress between effective and ineffective problem solvers. Journal of Counseling Psychology, 32, 135–138.CrossRefGoogle Scholar
  56. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  57. Ozbay, F., Fitterling, H., Charney, D., & Southwick, S. (2008). Social support and resilience to stress across the life span: A neurobiologic framework. Current Psychiatry Reports, 10, 304–310.CrossRefPubMedGoogle Scholar
  58. Parkes, K. R. (1984). Locus of control, cognitive appraisal, and coping in stressful episodes. Journal of Personality and Social Psychology, 46, 655–668.CrossRefPubMedGoogle Scholar
  59. Pascual-Leone, A., Bartres-Faz, D., & Keenan, J. P. (1999). Transcranial magnetic stimulation: Studying the brain-behaviour relationship by induction of “virtual lesions.” Philosophical Transactions of the Royal Society B, 354, 1229–1238.CrossRefGoogle Scholar
  60. Pascual-Leone, A., & Pridmore, H. (1995). Transcranial magnetic stimulation. (TMS). Australian and New Zealand Journal of Psychiatry, 29, 698.PubMedGoogle Scholar
  61. Peterson, A., Thome, J., Frewen, P., & Lanius, R. A. (2014). Resting-state neuroimaging studies: A new way of identifying differences and similarities among the anxiety disorders? Canadian Journal of Psychiatry, 59, 294–300.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Polania, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.  https://doi.org/10.1016/j.cub.2012.05.021 CrossRefPubMedGoogle Scholar
  63. Pu, S., Nakagome, K., Yamada, T., Itakura, M., Yamanashi, T., Yamada, S., … Kaneko, K. (2016). Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia. Scientific Reports, 6, 22500.  https://doi.org/10.1038/srep22500 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447.CrossRefPubMedGoogle Scholar
  65. Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs, 80, 1–28.CrossRefPubMedGoogle Scholar
  66. Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35, 4566–4582.  https://doi.org/10.1002/hbm.22495 CrossRefPubMedGoogle Scholar
  67. Santarnecchi, E., Muller, T., Rossi, S., Sarkar, A., Polizzotto, N. R., Rossi, A., & Cohen Kadosh, R. (2016). Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex, 75, 33–43.CrossRefPubMedGoogle Scholar
  68. Santarnecchi, E., Polizzotto, N. R., Godone, M., Giovannelli, F., Feurra, M., Matzen, L., … Rossi, S. (2013). Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Current Biology, 23, 1449–1453.CrossRefPubMedGoogle Scholar
  69. Santarnecchi, E., Rossi, S., & Rossi, A. (2015). The smarter, the stronger: Intelligence level correlates with brain resilience to systematic insults. Cortex, 64, 293–309.  https://doi.org/10.1016/j.cortex.2014.11.005 CrossRefPubMedGoogle Scholar
  70. Scheier, M. F., Weintraub, J. K., & Carver, C. S. (1986). Coping with stress: Divergent strategies of optimists and pessimists. Journal of Personality and Social Psychology, 51, 1257–1264.CrossRefPubMedGoogle Scholar
  71. Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage, 82, 403–415.CrossRefPubMedGoogle Scholar
  72. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165.CrossRefPubMedGoogle Scholar
  73. Sica, C., Magni, C., Ghisi, M., Altoè, G., Sighinolfi, C., Chiri, L. R., & Franceschini, S. (2008). Coping Orientation to Problems Experienced–Nuova Versione Italiana (COPE-NVI): Uno strumento per la misura degli stili di coping. Psicoterapia Cognitiva e Comportamentale, 14, 27–53.Google Scholar
  74. Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23, 987–992.  https://doi.org/10.1016/j.cub.2013.04.045 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Southwick, S. M., & Charney, D. S. (2012). The science of resilience: Implications for the prevention and treatment of depression. Science, 338, 79–82.CrossRefPubMedGoogle Scholar
  76. Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23, 162–171.  https://doi.org/10.1016/j.conb.2012.11.015 CrossRefPubMedGoogle Scholar
  77. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17, 652–660.CrossRefPubMedGoogle Scholar
  78. Spreng, R. N., & Schacter, D. L. (2012). Default network modulation and large-scale network interactivity in healthy young and old adults. Cerebral Cortex, 22, 2610–2621.CrossRefPubMedGoogle Scholar
  79. Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 74–86.  https://doi.org/10.1162/jocn_a_00281 CrossRefPubMedGoogle Scholar
  80. Spreng, R. N., Stevens, W. D., Viviano, J. D., & Schacter, D. L. (2016). Attenuated anticorrelation between the default and dorsal attention networks with aging: Evidence from task and rest. Neurobiology of Aging, 45, 149–160.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sprengelmeyer, R., Steele, J. D., Mwangi, B., Kumar, P., Christmas, D., Milders, M., & Matthews, K. (2011). The insular cortex and the neuroanatomy of major depression. Journal of Affective Disorders, 133, 120–127.  https://doi.org/10.1016/j.jad.2011.04.004 CrossRefPubMedGoogle Scholar
  82. Tatti, E., Rossi, S., Innocenti, I., Rossi, A., & Santarnecchi, E. (2016). Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Research Reviews, 29, 66–89.CrossRefPubMedGoogle Scholar
  83. Thompson, R. W., Arnkoff, D. B., & Glass, C. R. (2011). Conceptualizing mindfulness and acceptance as components of psychological resilience to trauma. Trauma, Violence & Abuse, 12, 220–235.CrossRefGoogle Scholar
  84. Tryon, W. (2005). Possible mechanisms for why desensitization and exposure therapy work. Clinical Psychology Review, 25, 67–95.CrossRefPubMedGoogle Scholar
  85. Tsai, J., Harpaz-Rotem, I., Pietrzak, R. H., & Southwick, S. M. (2012). The role of coping, resilience, and social support in mediating the relation between PTSD and social functioning in veterans returning from Iraq and Afghanistan. Psychiatry: Interpersonal and Biological Processes, 75, 135–149.CrossRefGoogle Scholar
  86. Uddin, L. Q. (2014). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16, 55–61.CrossRefPubMedGoogle Scholar
  87. van der Werff, S. J. A., van den Berg, S. M., Pannekoek, J. N., Elzinga, B. M., & van der Wee, N. J. A. (2013). Neuroimaging resilience to stress: A review. Frontiers in Behavioral Neuroscience, 7, 39.  https://doi.org/10.3389/fnbeh.2013.00039 PubMedPubMedCentralGoogle Scholar
  88. van Tol, M.-J., van der Wee, N. J. A., van den Heuvel, O. A., Nielen, M. M. A., Demenescu, L. R., Aleman, A., … Veltman, D. J. (2010). Regional brain volume in depression and anxiety disorders. Archives of General Psychiatry, 67, 1002.CrossRefPubMedGoogle Scholar
  89. Wang, L., Song, M., Jiang, T., Zhang, Y., & Yu, C. (2011). Regional homogeneity of the resting-state brain activity correlates with individual intelligence. Neuroscience Letters, 488, 275–278.CrossRefPubMedGoogle Scholar
  90. Waugh, C. E., Thompson, R. J., & Gotlib, I. H. (2011). Flexible emotional responsiveness in trait resilience. Emotion, 11, 1059–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Witek-Janusek, L., Albuquerque, K., Chroniak, K. R., Chroniak, C., Durazo-Arvizu, R., & Mathews, H. L. (2008). Effect of mindfulness based stress reduction on immune function, quality of life and coping in women newly diagnosed with early stage breast cancer. Brain, Behavior, and Immunity, 22, 969–981.  https://doi.org/10.1016/j.bbi.2008.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wolters Gregório, G., Ponds, R. W. H. M., Smeets, S. M. J., Jonker, F., Pouwels, C. G. J. G., Verhey, F. R., & van Heugten, C. M. (2015). Associations between executive functioning, coping, and psychosocial functioning after acquired brain injury. British Journal of Clinical Psychology, 54, 291–306.CrossRefPubMedGoogle Scholar
  93. Zalesky, A., Cocchi, L., Fornito, A., Murray, M. M., & Bullmore, E. (2012). Connectivity differences in brain networks. NeuroImage, 60, 1055–1062.  https://doi.org/10.1016/j.neuroimage.2012.01.068 CrossRefPubMedGoogle Scholar
  94. Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews Neurology, 6, 15–28.CrossRefPubMedGoogle Scholar
  95. Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici, G. D., … Seeley, W. W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133, 1352–1367.  https://doi.org/10.1093/brain/awq075 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Emiliano Santarnecchi
    • 1
    • 2
    • 3
    • 4
  • Giulia Sprugnoli
    • 1
  • Elisa Tatti
    • 1
  • Lucia Mencarelli
    • 1
  • Francesco Neri
    • 1
  • Davide Momi
    • 1
  • Giorgio Di Lorenzo
    • 5
    • 6
  • Alvaro Pascual-Leone
    • 2
  • Simone Rossi
    • 1
    • 4
    • 7
  • Alessandro Rossi
    • 1
    • 4
  1. 1.Siena Brain Investigation & Neuromodulation Laboratory (Si-Bin Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology SectionUniversity of SienaSienaItaly
  2. 2.Berenson-Allen Center for Non-Invasive Brain StimulationBeth Israel Medical Center, Harvard Medical SchoolBostonUSA
  3. 3.Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics DepartmentUniversity of SienaSienaItaly
  4. 4.Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
  5. 5.Laboratory of Psychophysiology, Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
  6. 6.Psychiatry and Clinical Psychology Unit, Department of NeurosciencesFondazione Policlinico Tor VergataRomeItaly
  7. 7.Human Physiology Section, Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly

Personalised recommendations