Advertisement

The influence of self-construals on the ERP response to the rewards for self and mother

  • Xiangru Zhu
  • Huijun Zhang
  • Lili Wu
  • Suyong Yang
  • Haiyan Wu
  • Wenbo Luo
  • Ruolei Gu
  • Yue-jia Luo
Article
  • 157 Downloads

Abstract

Individual self-construal (independent vs. interdependent) could be temporarily modulated by the priming effect. Our previous studies have found that when Chinese participants gambled for mother and for self, outcome feedback evoked comparable neural responses between two conditions. However, it remains unclear if the response to rewards for mother and for self would differ after independence self-construal priming. In this study, we manipulated participants’ self-construal (independent vs. interdependent) before a simple gambling task. The event-related potential (ERP) results reveal that when an interdependent self-construal was primed, the participants exhibited a comparable feedback-related negativity (FRN) elicited by outcome feedback for self and for mother. In contrast, independent self-construal priming resulted in a greater FRN elicited by outcome feedback for self than for mother. Meanwhile, the P3 component was insensitive to self-construal manipulation. These findings indicate the modulation effect of self-construal priming on the response to rewards for others.

Keywords

Self-construals Self Mother Outcome evaluation Feedback-related negativity 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31300846, 31571124, 31600931).

References

  1. Amodio, D. M., Bartholow, B. D., & Ito, T. A. (2014). Tracking the dynamics of the social brain: ERP approaches for social cognitive and affective neuroscience. Social Cognitive & Affective Neuroscience, 9(3), 385-393. doi:  https://doi.org/10.1093/scan/nst177 CrossRefGoogle Scholar
  2. Bress, J. N., & Hajcak, G. (2013). Self-report and behavioral measures of reward sensitivity predict the feedback negativity. Psychophysiology, 50(7), 610-616. doi:  https://doi.org/10.1111/psyp.12053 CrossRefPubMedGoogle Scholar
  3. Chen, P. H. A., Wagner, D. D., Kelley, W. M., Powers, K. E., & Heatherton, T. F. (2013). Medial prefrontal cortex differentiates self from mother in Chinese: Evidence from self-motivated immigrants. Culture and Brain, 1(1), 3-15. doi:  https://doi.org/10.1007/s40167-013-0001-5 CrossRefGoogle Scholar
  4. Chiao, J. Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D.,... Iidaka, T. (2009). Neural basis of individualistic and collectivistic views of self. Human Brain Mapping, 30(9), 2813-2820. doi:  https://doi.org/10.1002/hbm.20707 CrossRefPubMedGoogle Scholar
  5. Chiao, J. Y., Harada, T., Komeda, H., Li, Z., Mano, Y., Saito, D.,... Iidaka, T. (2010). Dynamic cultural influences on neural representations of the self. Journal of Cognitive Neuroscience, 22(1), 1-11. doi:  https://doi.org/10.1162/jocn.2009.21192 CrossRefPubMedGoogle Scholar
  6. Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33(1), 107-112. doi:  https://doi.org/10.1177/001316447303300111 CrossRefGoogle Scholar
  7. Cohen, M. X., Wilmes, K., & van de Vijver, I. (2011). Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Sciences, 15(12), 558-566. doi:  https://doi.org/10.1016/j.tics.2011.10.004 CrossRefPubMedGoogle Scholar
  8. Colzato, L. S., de Bruijn, E. R., & Hommel, B. (2012). Up to "me" or up to "us"? The impact of self-construal priming on cognitive self-other integration. Frontiers in Psychology, 3, 341. doi:  https://doi.org/10.3389/fpsyg.2012.00341 PubMedPubMedCentralGoogle Scholar
  9. Cross, S. E., Hardin, E. E., & Gercek-Swing, B. (2011). The what, how, why, and where of self-construal. Personality and Social Psychology Review, 15(2), 142-179. doi:  https://doi.org/10.1177/1088868310373752 CrossRefPubMedGoogle Scholar
  10. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. doi:  https://doi.org/10.3758/BF03193146 CrossRefPubMedGoogle Scholar
  11. Foti, D., Weinberg, A., Bernat, E. M., & Proudfit, G. H. (2015). Anterior cingulated activity to monetary loss and basal ganglia activity to monetary gain uniquely. Clinical Neurophysiology, 126(7), 1338-1347. doi:  https://doi.org/10.1016/j.clinph.2014.08.025 CrossRefPubMedGoogle Scholar
  12. Gardner, W. L., Gabriel, S., & Lee, A. Y. (1999). “I” value freedom, but “we” value relationships: Self-construal priming mirrors cultural differences in judgment. Psychological Science, 10(4), 321-326. doi:  https://doi.org/10.1111/1467-9280.00162 CrossRefGoogle Scholar
  13. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282. doi:  https://doi.org/10.1126/science.1066893 CrossRefPubMedGoogle Scholar
  14. Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95-112. doi:  https://doi.org/10.1007/BF02289823 CrossRefGoogle Scholar
  15. Gu, R., Feng, X., Broster, L. S., Yuan, L., Xu, P., & Luo, Y.-j. (2017). Valence and magnitude ambiguity in feedback processing. Brain and Behavior, 7(7), e00672. doi:  https://doi.org/10.1002/brb3.672 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gu, R., Ge, Y., Jiang, Y., & Luo, Y. J. (2010). Anxiety and outcome evaluation: The good, the bad and the ambiguous. Biological Psychology, 85(2), 200-206. doi:  https://doi.org/10.1016/j.biopsycho.2010.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gu, R., Huang, Y. X., & Luo, Y. J. (2010). Anxiety and feedback negativity. Psychophysiology, 47(5), 961-967. doi:  https://doi.org/10.1111/j.1469-8986.2010.00997.x PubMedGoogle Scholar
  18. Gu, R., Wu, T., Jiang, Y., & Luo, Y. J. (2011). Woulda, coulda, shoulda: The evaluation and the impact of the alternative outcome. Psychophysiology, 48(10), 1354-1360. doi:  https://doi.org/10.1111/j.1469-8986.2011.01215.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hajcak, G., Dunning, J. P., & Foti, D. (2009). Motivated and controlled attention to emotion: Time-course of the late positive potential. Clinical Neurophysiology, 120(3), 505-510. doi:  https://doi.org/10.1016/j.clinph.2008.11.028 CrossRefPubMedGoogle Scholar
  20. Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It's worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905-912. doi:  https://doi.org/10.1111/j.1469-8986.2007.00567.x CrossRefPubMedGoogle Scholar
  21. Han, S., & Humphreys, G. (2016). Self-construal: A cultural framework for brain function. Current Opinion in Psychology, 8, 10-14. doi:  https://doi.org/10.1016/j.copsyc.2015.09.013 CrossRefPubMedGoogle Scholar
  22. Heatherton, T. F., Wyland, C. L., Macrae, C. N., Demos, K. E., Denny, B. T., & Kelley, W. M. (2006). Medial prefrontal activity differentiates self from close others. Social Cognitive & Affective Neuroscience, 1(1), 18-25. doi:  https://doi.org/10.1093/scan/nsl001 CrossRefGoogle Scholar
  23. Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917. doi:  https://doi.org/10.1111/j.1469-8986.2007.00561.x CrossRefPubMedGoogle Scholar
  24. Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697. doi:  https://doi.org/10.1111/j.1469-8986.2008.00668.x CrossRefPubMedGoogle Scholar
  25. Jiang, C., Varnum, M. E., Hou, Y., & Han, S. (2014). Distinct effects of self-construal priming on empathic neural responses in Chinese and Westerners. Social Neuroscience, 9(2), 130-138. doi:  https://doi.org/10.1080/17470919.2013.867899 CrossRefPubMedGoogle Scholar
  26. Krishna, A., Zhou, R., & Zhang, S. (2008). The effect of self-construal on spatial judgments. Journal of Consumer Research, 35(2), 337-348. doi:  https://doi.org/10.1086/588686 CrossRefGoogle Scholar
  27. Lange, S., Leue, A., & Beauducel, A. (2012). Behavioral approach and reward processing: Results on feedback-related negativity and P3 component. Biological Psychology, 89(2), 416-425. doi:  https://doi.org/10.1016/j.biopsycho.2011.12.004 CrossRefPubMedGoogle Scholar
  28. Leng, Y., & Zhou, X. L. (2010). Modulation of the brain activity in outcome evaluation by interpersonal relationship: An ERP study. Neuropsychologia, 48(2), 448-455.CrossRefPubMedGoogle Scholar
  29. Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences of the United States of America, 113(35), 9763-9768. doi:  https://doi.org/10.1073/pnas.1603198113 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14(6), 647-654. doi:  https://doi.org/10.1093/cercor/bhh025 CrossRefPubMedGoogle Scholar
  31. Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98(2), 224-253. doi:  https://doi.org/10.1037/0033-295X.98.2.224 CrossRefGoogle Scholar
  32. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a "generic" neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798. doi:  https://doi.org/10.1162/jocn.1997.9.6.788 CrossRefPubMedGoogle Scholar
  33. Mobbs, D., Yu, R., Meyer, M., Passamonti, L., Seymour, B., Calder, A. J.,... Dalgleish, T. (2009). A key role for similarity in vicarious reward. Science, 324(5929), 900. doi:  https://doi.org/10.1126/science.1170539 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. Neuroimage, 112, 244-253. doi:  https://doi.org/10.1016/j.neuroimage.2014.12.056 CrossRefPubMedGoogle Scholar
  35. Ng, S. H., Han, S., Mao, L., & Lai, J. C. (2010). Dynamic bicultural brains: fMRI study of their flexible neural representation of self and significant others in response to culture primes. Asian Journal of Social Psychology, 13(2), 83-91. doi:  https://doi.org/10.1111/j.1467-839X.2010.01303.x CrossRefGoogle Scholar
  36. Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J. A., Mars, R. B., Holroyd, C. B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage, 25(4), 1302-1309. doi:  https://doi.org/10.1016/j.neuroimage.2004.12.043 CrossRefPubMedGoogle Scholar
  37. Obhi, S. S., Hogeveen, J., & Pascual-Leone, A. (2011). Resonating with others: The effects of self-construal type on motor cortical output. Journal of Neuroscience, 31(41), 14531-14535. doi:  https://doi.org/10.1523/JNEUROSCI.3186-11.2011 CrossRefPubMedGoogle Scholar
  38. Polezzi, D., Sartori, G., Rumiati, R., Vidotto, G., & Daum, I. (2010). Brain correlates of risky decision-making. Neuroimage, 49(2), 1886-1894. doi:  https://doi.org/10.1016/j.neuroimage.2009.08.068 CrossRefPubMedGoogle Scholar
  39. Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459. doi:  https://doi.org/10.1111/psyp.12370 CrossRefPubMedGoogle Scholar
  40. Ray, R. D., Shelton, A. L., Hollon, N. G., Matsumoto, D., Frankel, C. B., Gross, J. J., & Gabrieli, J. D. (2010). Interdependent self-construal and neural representations of self and mother. Social Cognitive & Affective Neuroscience, 5(2-3), 318-323. doi:  https://doi.org/10.1093/scan/nsp039 CrossRefGoogle Scholar
  41. Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychological Bulletin, 141(1), 213-235. doi:  https://doi.org/10.1037/bul0000006 CrossRefPubMedGoogle Scholar
  42. San Martín, R. (2012). Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in Human Neuroscience, 6, 304. doi:  https://doi.org/10.3389/fnhum.2012.00304 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Singelis, T. M. (1994). The measurement of independent and interdependent self-construals. Personality and Social Psychology Bulletin, 20(5), 580-591. doi:  https://doi.org/10.1177/0146167294205014 CrossRefGoogle Scholar
  44. Sui, J., & Han, S. (2007). Self-construal priming modulates neural substrates of self-awareness. Psychological Science, 18(10), 861-866. doi:  https://doi.org/10.1111/j.1467-9280.2007.01992.x CrossRefPubMedGoogle Scholar
  45. Sui, J., Hong, Y. Y., Hong Liu, C., Humphreys, G. W., & Han, S. (2013). Dynamic cultural modulation of neural responses to one's own and friend's faces. Social Cognitive & Affective Neuroscience, 8(3), 326-332. doi:  https://doi.org/10.1093/scan/nss001 CrossRefGoogle Scholar
  46. Sui, J., Zhu, Y., & Chiu, C. Y. (2007). Bicultural mind, self-construal, and self-and mother-reference effects: Consequences of cultural priming on recognition memory. Journal of Experimental Social Psychology, 43(5), 818-824. doi:  https://doi.org/10.1016/j.jesp.2006.08.005 CrossRefGoogle Scholar
  47. Van Baaren, R. B., Maddux, W. W., Chartrand, T. L., De Bouter, C., & van Knippenberg, A. (2003). It takes two to mimic: Behavioral consequences of self-construals. Journal of Personality and Social Psychology, 84(5), 1093-1102. doi:  https://doi.org/10.1037/0022-3514.84.5.1093 CrossRefPubMedGoogle Scholar
  48. van Prooijen, J. W., & Zwenk, F. (2009). Self-construal level and voice procedures: The individual self as psychological basis for procedural fairness effects. Journal of Experimental Social Psychology, 45(2), 392-397. doi:  https://doi.org/10.1016/j.jesp.2008.10.008 CrossRefGoogle Scholar
  49. Varnum, M. E., Shi, Z., Chen, A., Qiu, J., & Han, S. (2013). When “Your” reward is the same as “My” reward: Self-construal priming shifts neural responses to own vs. friends' rewards. Neuroimage, 87C, 164-169. doi:  https://doi.org/10.1016/j.neuroimage.2013.10.042 Google Scholar
  50. Vazire, S. (2016). Editorial. Social Psychological and Personality Science, 7(1), 3-7. doi:  https://doi.org/10.1177/1948550615603955 CrossRefGoogle Scholar
  51. Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews, 36(8), 1870-1884. doi:  https://doi.org/10.1016/j.neubiorev.2012.05.008 CrossRefGoogle Scholar
  52. Wang, C., Ma, Y., & Han, S. (2014). Self-construal priming modulates pain perception: Event-related potential evidence. Cognitive Neuroscience, 5(1), 3-9. doi:  https://doi.org/10.1080/17588928.2013.797388 CrossRefPubMedGoogle Scholar
  53. Wang, G., Mao, L., Ma, Y., Yang, X., Cao, J., Liu, X.,... Han, S. (2012). Neural representations of close others in collectivistic brains. Social Cognitive & Affective Neuroscience, 7(2), 222-229. doi:  https://doi.org/10.1093/scan/nsr002 CrossRefGoogle Scholar
  54. Wang, Y., Yuan, Q., & Xu, Q. (2008). A preliminary study on self-constructionals scale of Chinese-version. Chinese Journal of Clinical Psychology, 16(6), 602-604.Google Scholar
  55. Wu, Y., & Zhou, X. L. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114-122. doi:  https://doi.org/10.1016/j.brainres.2009.06.032 CrossRefPubMedGoogle Scholar
  56. Wuyun, G., Shu, M., Cao, Z., Huang, W., Zou, X., Li, S.,... Wu, Y. (2014). Neural representations of the self and the mother for Chinese individuals. Plos One, 9(3), e91556. doi:  https://doi.org/10.1371/journal.pone.0091556 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yang, Q., Tang, P., Gu, R., Luo, W., & Luo, Y. J. (2015). Implicit emotion regulation affects outcome evaluation. Social Cognitive and Affective Neuroscience, 10(6), 824-831. doi:  https://doi.org/10.1093/scan/nsu124 CrossRefPubMedGoogle Scholar
  58. Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258-6264. doi:  https://doi.org/10.1523/JNEUROSCI.4537-03.2004 CrossRefPubMedGoogle Scholar
  59. Zendel, B. R., & Alain, C. (2014). Enhanced attention-dependent activity in the auditory cortex of older musicians. Neurobiol Aging, 35(1), 55-63. doi:  https://doi.org/10.1016/j.neurobiolaging.2013.06.022 CrossRefPubMedGoogle Scholar
  60. Zhu, X., Gu, R., Wu, H., & Luo, Y. (2015). Self-reflection modulates the outcome evaluation process: Evidence from an ERP study. International Journal of Psychophysiology, 98(3 Pt 1), 389-393. doi:  https://doi.org/10.1016/j.ijpsycho.2015.08.001 CrossRefPubMedGoogle Scholar
  61. Zhu, X., Wang, L., Yang, S., Gu, R., Wu, H., & Luo, Y. J. (2016). The motivational hierarchy between the personal self and close others in the Chinese brain: An ERP study. Frontiers in Psychology, 7, 1467. doi:  https://doi.org/10.3389/fpsyg.2016.01467 PubMedPubMedCentralGoogle Scholar
  62. Zhu, X., Wu, H., Yang, S., & Gu, R. (2016). Motivational hierarchy in the Chinese brain: Primacy of the individual self, relational self, or collective self? Frontiers in Psychology, 7, 877. doi:  https://doi.org/10.3389/fpsyg.2016.00877 PubMedPubMedCentralGoogle Scholar
  63. Zhu, X., Wu, H., Yang, S., & Gu, R. (2017). The influence of self-construal type on outcome evaluation: Evidence from event-related potentials. International Journal of Psychophysiology, 112, 64-69. doi:  https://doi.org/10.1016/j.ijpsycho.2016.12.010 CrossRefPubMedGoogle Scholar
  64. Zhu, X., Zhang, Y., Yang, S., Wu, H., Wang, L., & Gu, R. (2015). The motivational hierarchy between self and mother: Evidence from the feedback-related negativity. Acta Psychologica Sinica, 47(6), 807-813. doi:  https://doi.org/10.3724/SP.J.1041.2015.00807 CrossRefGoogle Scholar
  65. Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. Neuroimage, 34(3), 1310-1316. doi:  https://doi.org/10.1016/j.neuroimage.2006.08.047 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Xiangru Zhu
    • 1
    • 2
  • Huijun Zhang
    • 3
  • Lili Wu
    • 4
    • 5
  • Suyong Yang
    • 6
  • Haiyan Wu
    • 5
    • 7
  • Wenbo Luo
    • 8
  • Ruolei Gu
    • 5
    • 7
  • Yue-jia Luo
    • 9
  1. 1.Institute of Cognition, Brain and HealthHenan UniversityKaifengChina
  2. 2.Institute of Psychology and BehaviorHenan UniversityKaifengChina
  3. 3.School of ManagementGuangdong University of TechnologyGuangzhouChina
  4. 4.CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
  5. 5.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
  6. 6.Department of PsychologyShanghai University of SportShanghaiChina
  7. 7.CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
  8. 8.Liaoning Normal UniversitySchool of PsychologyDalianChina
  9. 9.Institute of Affective and Social NeuroscienceShenzhen UniversityShenzhenChina

Personalised recommendations