Advertisement

Attention, Perception, & Psychophysics

, Volume 80, Issue 6, pp 1390–1408 | Cite as

Sensitivity to stimulus similarity is associated with greater sustained attention ability

  • David Rothlein
  • Joseph DeGutis
  • Laura Germine
  • Jeremy Wilmer
  • Regina McGlinchey
  • Michael Esterman
Article

Abstract

Sustained attention is critical for tasks where perceptual information must be continuously processed, like reading or driving; however, the cognitive processes underlying sustained attention remain incompletely characterized. In the experiments that follow, we explore the relationship between sustaining attention and the contents and maintenance of task-relevant features in an attentional template. Specifically, we administered the gradual onset continuous performance task (gradCPT), a sensitive measure of sustained attention, to a large web-based sample (N>20,000) and a smaller laboratory sample for validation and extension. The gradCPT requires participants to respond to most stimuli (city scenes – 90 %) and withhold to rare target images (mountain scenes – 10 %). By using stimulus similarity to probe the representational content of task-relevant features—assuming either exemplar- or category-based feature matching—we predicted that RTs for city stimuli that were more “mountain-like” would be slower and “city-like” mountain stimuli would elicit more erroneous presses. We found that exemplar-based target-nontarget (T-N) similarity predicted both RTs and erroneous button presses, suggesting a stimulus-specific feature matching process was adopted. Importantly, individual differences in the degree of sensitivity to these similarity measures correlated with conventional measures of attentional ability on the gradCPT as well as another CPT that is perceptually less demanding. In other words, individuals with greater sustained attention ability (assessed by two tasks) were more likely to be influenced by stimulus similarity on the gradCPT. These results suggest that sustained attention facilitates the construction and maintenance of an attentional template that is optimal for a given task.

Keywords

Sustained attention Attentional templates Visual similarity Individual differences 

Notes

Acknowledgements

This work was supported by the US Department of Veteran Affairs through a Clinical Science Research & Development Career Development Award (grant number 1IK2CX000706-01A2) to M.E and the Translational Research Center for TBI and Stress Disorders (TRACTS), a VA Rehabilitation Research and Development Traumatic Brain Injury Center of Excellence (B9254-C).

References

  1. Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31(25), 9315–9322.  https://doi.org/10.1523/JNEUROSCI.1097-11.2011 CrossRefPubMedGoogle Scholar
  2. Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D., & Kriegeskorte, N. (2014). Unique semantic space in the brain of each beholder predicts perceived similarity. Proceedings of the National Academy of Sciences, 111(40), 14565–14570.  https://doi.org/10.1073/pnas.1402594111 CrossRefGoogle Scholar
  3. Cheyne, J. A., Carriere, J. S. A., & Smilek, D. (2009). Absent minds and absent agents: Attention-lapse induced alienation of agency. Consciousness and Cognition, 18(2), 481–493.  https://doi.org/10.1016/j.concog.2009.01.005
  4. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–24.  https://doi.org/10.1073/pnas.0900234106
  5. Choo, H., & Walther, D. B. (2016). Contour junctions underlie neural representations of scene categories in high-level human visual cortex: Contour junctions underlie neural code of scenes. NeuroImage, 135, 32–44.  https://doi.org/10.1016/j.neuroimage.2016.04.021 CrossRefPubMedGoogle Scholar
  6. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hilsdale, NJ: Lawrence Earlbaum Associates.Google Scholar
  7. Conners, C. K. (2000). Continuous performance test II: Technical guide and software manual. Toronto, ON: Multi-Health Systems.Google Scholar
  8. deBettencourt, M. T., Norman, K. A., & Turk-Browne, N. B. (2017). Forgetting from lapses of sustained attention. Psychonomic Bulletin & Review.  https://doi.org/10.3758/s13423-017-1309-5
  9. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.  https://doi.org/10.1146/annurev.ne.18.030195.001205 CrossRefPubMedGoogle Scholar
  10. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.  https://doi.org/10.1037/0033-295X.96.3.433 CrossRefPubMedGoogle Scholar
  11. Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712–2723.  https://doi.org/10.1093/cercor/bhs261 CrossRefPubMedGoogle Scholar
  12. Esterman, M., Poole, V., Liu, G., & DeGutis, J. (2016). Modulating Reward Induces Differential Neurocognitive Approaches to Sustained Attention. Cerebral Cortex, 1–11.  https://doi.org/10.1093/cercor/bhw214
  13. Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained Attention Across the Life Span in a Sample of 10,000: Dissociating Ability and Strategy. Psychological Science.  https://doi.org/10.1177/0956797615594896
  14. Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor Probability Changes the Shape of the Attentional Template. Journal of Experimental Psychology: Human Perception and Performance.  https://doi.org/10.1037/xhp0000430
  15. Germine, L., Nakayama, K., Duchaine, B. C., Chabris, C. F., Chatterjee, G., & Wilmer, J. B. (2012). Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychonomic Bulletin & Review, 19(5), 847–857.  https://doi.org/10.3758/s13423-012-0296-9 CrossRefGoogle Scholar
  16. Goldzieher, M. J., Andrews, S., & Harris, I. M. (2016). Two scenes or not two scenes: The effects of stimulus repetition and view-similarity on scene categorization from brief displays. Memory & Cognition, 1–14.  https://doi.org/10.3758/s13421-016-0640-9
  17. Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58(2), 137–176.  https://doi.org/10.1016/j.cogpsych.2008.06.001 CrossRefPubMedGoogle Scholar
  18. Harel, A., Kravitz, D. J., & Baker, C. I. (2013). Deconstructing Visual Scenes in Cortex: Gradients of Object and Spatial Layout Information. Cerebral Cortex, 23(4), 947–957.  https://doi.org/10.1093/cercor/bhs091 CrossRefPubMedGoogle Scholar
  19. Head, J., & Helton, W. S. (2012). Natural scene stimuli and lapses of sustained attention. Consciousness and Cognition, 21(4), 1617–1625.  https://doi.org/10.1016/j.concog.2012.08.009
  20. Helton, W. S., & Russell, P. N. (2011). Feature absence-presence and two theories of lapses of sustained attention. Psychological Research, 75(5), 384–392.  https://doi.org/10.1007/s00426-010-0316-1
  21. Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.  https://doi.org/10.1016/S0896-6273(02)01091-7 CrossRefPubMedGoogle Scholar
  22. Hout, M. C., Godwin, H. J., Fitzsimmons, G., Robbins, A., Menneer, T., & Goldinger, S. D. (2015). Using multidimensional scaling to quantify similarity in visual search and beyond. Attention, Perception, & Psychophysics, 3–20.  https://doi.org/10.3758/s13414-015-1010-6
  23. Hout, M. C., & Goldinger, S. D. (2015). Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, & Psychophysics, 77(1), 128–149.  https://doi.org/10.3758/s13414-014-0764-6 CrossRefGoogle Scholar
  24. Kinoshita, S., & Kaplan, L. (2008). Priming of abstract letter identities in the letter match task. Quarterly Journal of Experimental Psychology (2006), 61(12), 1873–85.  https://doi.org/10.1080/17470210701781114 CrossRefGoogle Scholar
  25. Konkle, T., Brady, T. F., Alvarez, G. A, & Oliva, A. (2010a). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology. General, 139(3), 558–78.  https://doi.org/10.1037/a0019165 Google Scholar
  26. Konkle, T., Brady, T. F., Alvarez, G. A, & Oliva, A. (2010b). Scene Memory Is More Detailed Than You Think. Psychological Science, 21(11), 1551–1556.  https://doi.org/10.1177/0956797610385359 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kravitz, D. J., Peng, C. S., & Baker, C. I. (2011). Real-World Scene Representations in High-Level Visual Cortex: It’s the Spaces More Than the Places. Journal of Neuroscience, 31(20), 7322–7333.  https://doi.org/10.1523/JNEUROSCI.4588-10.2011 CrossRefPubMedGoogle Scholar
  28. Leark, R. A., Greenberg, L. K., Kindschi, C. L., Dupuy, T. R., & Hughes, S. J. (2007). Test of Variables of Attention: Professional Manual. Los Alamitos: The TOVA Company.Google Scholar
  29. Lee, J., & Geng, J. J. (2017). Idiosyncratic Patterns of Representational Similarity in Prefrontal Cortex Predict Attentional Performance. The Journal of Neuroscience, 37(5), 1257–1268.  https://doi.org/10.1523/JNEUROSCI.1407-16.2016 CrossRefPubMedGoogle Scholar
  30. Lippa, S. M., Fonda, J. R., Fortier, C. B., Amick, M. A., Kenna, A., Milberg, W. P., & McGlinchey, R. E. (2015). Deployment-Related Psychiatric and Behavioral Conditions and Their Association with Functional Disability in OEF/OIF/OND Veterans. Journal of Traumatic Stress, 28(1), 25–33.  https://doi.org/10.1002/jts.21979
  31. Malcolm, G. L., Groen, I. I. A., & Baker, C. I. (2016). Making Sense of Real-World Scenes. Trends in Cognitive Sciences, 20(11), 843–856.  https://doi.org/10.1016/j.tics.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Maxfield, J. T., & Zelinsky, G. J. (2012). Searching Through the Hierarchy: How Level of Target Categorization Affects Visual Search. Visual Cognition, 20(10), 1153–1163.  https://doi.org/10.1080/13506285.2012.735718 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175.  https://doi.org/10.1023/A:1011139631724 CrossRefGoogle Scholar
  34. Oliva, A., & Torralba, A. (2006). Chapter 2 Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research, 155, 23–36.  https://doi.org/10.1016/S0079-6123(06)55002-2 CrossRefPubMedGoogle Scholar
  35. Parasuraman, R., de Visser, E., Clarke, E., McGarry, W. R., Hussey, E., Shaw, T., & Thompson, J. C. (2009). Detecting threat-related intentional actions of others: Effects of image quality, response mode, and target cuing on vigilance. Journal of Experimental Psychology: Applied, 15(4), 275–290.  https://doi.org/10.1037/a0017132
  36. Park, S., Brady, T. F., Greene, M. R., & Oliva, A. (2011). Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. The Journal of Neuroscience, 31(4), 1333–40.  https://doi.org/10.1523/JNEUROSCI.3885-10.2011 CrossRefPubMedGoogle Scholar
  37. Patterson, G., & Hays, J. (2012). SUN attribute database: Discovering, annotating, and recognizing scene attributes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2751–2758.  https://doi.org/10.1109/CVPR.2012.6247998
  38. Patterson, G., Xu, C., Su, H., & Hays, J. (2014). The SUN attribute database: Beyond categories for deeper scene understanding. International Journal of Computer Vision, 108(1–2), 59–81.  https://doi.org/10.1007/s11263-013-0695-z CrossRefGoogle Scholar
  39. Peelen, M. V., & Caramazza, A. (2012). Conceptual Object Representations in Human Anterior Temporal Cortex. Journal of Neuroscience, 32(45), 15728–15736.  https://doi.org/10.1523/JNEUROSCI.1953-12.2012 CrossRefPubMedGoogle Scholar
  40. Peelen, M. V, & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12125–30.  https://doi.org/10.1073/pnas.1101042108 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1995). Similarity determines the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 653–662.  https://doi.org/10.1037/0096-1523.21.3.653 PubMedGoogle Scholar
  42. Riley, E., Esterman, M., Fortenbaugh, F. C., & DeGutis, J. (2017). Time-of-day variation in sustained attentional control. Chronobiology International, 1–9.  https://doi.org/10.1080/07420528.2017.1308951
  43. Riley, E., Okabe, H., Germine, L., Wilmer, J., Esterman, M., & DeGutis, J. (2016). Gender Differences in Sustained Attentional Control Relate to Gender Inequality across Countries. Plos One, 11(11), e0165100.  https://doi.org/10.1371/journal.pone.0165100
  44. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). Oops!: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758.  https://doi.org/10.1016/S0028-3932(97)00015-8 CrossRefPubMedGoogle Scholar
  45. Rosenberg, M., Noonan, S., Degutis, J., & Esterman, M. (2013). Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task. Attention, Perception & Psychophysics, 75(3), 426–39.  https://doi.org/10.3758/s13414-012-0413-x CrossRefGoogle Scholar
  46. Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904–1914.  https://doi.org/10.1080/17470210902853530 CrossRefPubMedGoogle Scholar
  47. Sinha, P., & Russell, R. (2011). A perceptually based comparison of image similarity metrics. Perception, 40(11), 1269–1281.  https://doi.org/10.1068/p7063 CrossRefPubMedGoogle Scholar
  48. Smallwood, J., Davies, J. B., Heim, D., Finnigan, F., Sudberry, M., O’Connor, R., & Obonsawin, M. (2004). Subjective experience and the attentional lapse: Task engagement and disengagement during sustained attention. Consciousness and Cognition, 13(4), 657–690.  https://doi.org/10.1016/j.concog.2004.06.003
  49. Standing, L. (1973). Learning 10000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222.  https://doi.org/10.1080/14640747308400340 CrossRefPubMedGoogle Scholar
  50. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness. Journal of Cognitive Neuroscience, 21(10), 1934–45.  https://doi.org/10.1162/jocn.2009.21131 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 81–92.  https://doi.org/10.1167/5.1.8 CrossRefPubMedGoogle Scholar
  52. Visser, T. A. W., Davis, C., & Ohan, J. L. (2009). When similarity leads to sparing: Probing mechanisms underlying the attentional blink. Psychological Research, 73(3), 327–335.  https://doi.org/10.1007/s00426-008-0155-5 CrossRefPubMedGoogle Scholar
  53. Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009). Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain. Journal of Neuroscience, 29(34), 10573–10581.  https://doi.org/10.1523/JNEUROSCI.0559-09.2009 CrossRefPubMedGoogle Scholar
  54. Ward, R., Duncan, J., & Shapiro, K. (1997). Effects of similarity, difficulty, and nontarget presentation on the time course of visual attention. Perception & Psychophysics, 59(4), 593–600.  https://doi.org/10.3758/BF03211867 CrossRefGoogle Scholar
  55. Watson, D. M., Hartley, T., & Andrews, T. J. (2014). Patterns of response to visual scenes are linked to the low-level properties of the image. NeuroImage, 99, 402–410.  https://doi.org/10.1016/j.neuroimage.2014.05.045 CrossRefPubMedGoogle Scholar
  56. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978.  https://doi.org/10.1038/nn1727
  57. Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). SUN database: Large-scale scene recognition from abbey to zoo. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3485–3492.  https://doi.org/10.1109/CVPR.2010.5539970
  58. Xiao, J., Hays, J., Russell, B. C., Patterson, G., Ehinger, K. A, Torralba, A., & Oliva, A. (2013). Basic level scene understanding: categories, attributes and structures. Frontiers in Psychology, 4(August), 506.  https://doi.org/10.3389/fpsyg.2013.00506 PubMedPubMedCentralGoogle Scholar
  59. Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095–2103.  https://doi.org/10.1016/j.visres.2009.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning Deep Features for Scene Recognition using Places Database. Advances in Neural Information Processing Systems 27 NIPS, 14(6), 487–495.  https://doi.org/10.1162/153244303322533223 Google Scholar

Copyright information

© The Psychonomic Society, Inc. (outside the USA) 2018

Authors and Affiliations

  • David Rothlein
    • 1
    • 2
  • Joseph DeGutis
    • 1
    • 2
    • 3
    • 4
  • Laura Germine
    • 4
    • 5
  • Jeremy Wilmer
    • 6
  • Regina McGlinchey
    • 2
    • 3
    • 4
  • Michael Esterman
    • 1
    • 2
    • 3
    • 7
  1. 1.Boston Attention and Learning LaboratoryVA Boston Healthcare SystemBostonUSA
  2. 2.Translational Research Center for TBI and Stress Disorders (TRACTS), VA RR&D TBI Center of ExcellenceVA Boston Healthcare SystemBostonUSA
  3. 3.Geriatric Research Education and Clinical Center (GRECC)Boston Division VA Healthcare SystemBostonUSA
  4. 4.Department of PsychiatryHarvard Medical SchoolBostonUSA
  5. 5.Institute for Technology in PsychiatryMcLean HospitalBelmontUSA
  6. 6.Department of PsychologyWellesley CollegeWellesleyUSA
  7. 7.Department of PsychiatryBoston University School of MedicineBostonUSA

Personalised recommendations