Ultrawideband Microwave Biconical High-Gain Antenna for Dual-Band Systems of Omnidirectional Radio Monitoring

Abstract

This paper presents a new ultrawideband omnidirectional microwave biconical antenna having gain above 10 dB that has been proposed, developed, optimized and experimentally tested. The main feature of the developed biconical antenna is its possible use in uniaxial dual-band systems of omnidirectional radio monitoring. The possibility of arranging two omnidirectional antennas having different operating frequency bands on a single axis is provided by feeding a biconical antenna via a coaxial transmission line, the inner conductor of which contains another coaxial line for feeding the second antenna with smaller size conductors. For ensuring a high gain of biconical antenna (above 10 dB at diameter 21λ0), the antenna design included an axial-symmetric dielectric lens designed for equalizing the phase front at the aperture in the ultrawideband of frequencies with bandwidth ratio 2.3:1. The use of optimal dielectric lens makes it possible to achieve the same value of gain at the antenna diameter, which is 5 times as small as the one in the absence of lens. The veracity of theoretical results obtained is confirmed by a good agreement of calculated characteristics with measured ones for the developed prototype of biconical antenna. The proposed ultrawideband omnidirectional biconical antenna can be recommended for application in the state-of-the-art and future advanced systems of omnidirectional radio monitoring, radio intelligence, data transmission, and radio countermeasures.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

References

  1. 1

    Modern Antenna Handbook (Wiley, 2008). DOI: https://doi.org/10.1002/9780470294154.

    Google Scholar 

  2. 2

    Antenna Systems and Electronic Warfare Applications (Artech House, 2012).

    Google Scholar 

  3. 3

    W. L. Stutzman, G. A. Thiele, Antenna Theory and Design (Wiley, 2012).

    Google Scholar 

  4. 4

    T. A. Milligan, Modern Antenna Design (Wiley-IEEE Press, 2005). URI: https://www.wiley.com/en-us/Modern+Antenna+Design%2C+2nd+Edition-p-9780471457763.

    Google Scholar 

  5. 5

    F. F. Dubrovka, A. S. Kim, "A new mathematical model of dual-reflector omnidirectional antennas," Radioelectron. Commun. Syst., v.42, n.6, p.1 (1999).

    Google Scholar 

  6. 6

    J. R. Bergmann, F. J. S. Moreira, "Omnidirectional ADE antenna with a GO-shaped main reflector for an arbitrary far-field pattern in the elevation plane," IET Microwaves, Antennas Propag., v.3, n.7, p.1028 (2009). DOI: https://doi.org/10.1049/iet-map.2008.0171.

    Article  Google Scholar 

  7. 7

    U. C. Resende, F. J. S. Moreira, J. R. Bergmann, "Analysis of omnidirectional antennas with radome operating in LMDS band for signals of digital TV," in 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) (IEEE, Washington, 2009). DOI: https://doi.org/10.1109/IMOC.2009.5427625.

    Google Scholar 

  8. 8

    R. A. Penchel, S. R. Zang, J. R. Bergmann, F. J. S. Moreira, "Synthesis and rigorous analysis of omnidirectional ADE antenna with shaped main reflector described by local conic sections," in 2012 6th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2012). DOI: https://doi.org/10.1109/EuCAP.2012.6206184.

    Google Scholar 

  9. 9

    R. A. Penchel, S. R. Zang, J. R. Bergmann, F. J. S. Moreira, "Use of parabolic sections to shape the main reflector of omnidirectional dual-reflector antennas," in 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA) (IEEE, Washington, 2013). DOI: https://doi.org/10.1109/ICEAA.2013.6632477.

    Google Scholar 

  10. 10

    S. R. Zang, J. R. Bergmann, "Analysis of omnidirectional dual-reflector antenna and feeding horn using method of moments," IEEE Trans. Antennas Propag., v.62, n.3, p.1534 (2014). DOI: https://doi.org/10.1109/TAP.2013.2296775.

    Article  Google Scholar 

  11. 11

    S. Z. Sapuan, F. H. Herie, M. Z. M. Jenu, "A new small sized wideband biconical antenna for Electromagnetic Compatibility (EMC) measurements," in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (IEEE, 2016). DOI: https://doi.org/10.1109/APACE.2016.7915891.

    Google Scholar 

  12. 12

    A. M. Bobreshov, A. S. Zhabin, E. A. Seregina, G. K. Uskov, "Biconical antenna with inhomogeneous dielectric lens for UWB applications," Electron. Lett., v.56, n.17, p.857 (2020). DOI: https://doi.org/10.1049/el.2020.1098.

    Article  Google Scholar 

  13. 13

    N. Liu, Z. Zhang, G. Fu, Q. Liu, L. Wang, "A compact biconical antenna for ultrawideband applications," in 2013 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (IEEE, 2013). DOI: https://doi.org/10.1109/MAPE.2013.6689814.

    Google Scholar 

  14. 14

    S. S. Zhekov, A. Tatomirescu, G. F. Pedersen, "Modified biconical antenna for ultrawideband applications," in 2016 10th European Conference on Antennas and Propagation (EuCAP) (IEEE, 2016). DOI: https://doi.org/10.1109/EuCAP.2016.7481364.

    Google Scholar 

  15. 15

    V. V. Yakovlev, F. F. Dubrovka, V. P. Bilonoga, Y. V. Ryabkin, S. I. Piltyay, "Dual-band omnidirectional antenna system," UA Patent 133696 (2019).

  16. 16

    V. V. Yakovlev, F. F. Dubrovka, V. P. Bilonoga, Y. V. Ryabkin, S. I. Piltyay, "Dual-band omnidirectional antenna system," UA Patent 120019 (2019).

  17. 17

    F. F. Dubrovka, G. A. Yena, P. Y. Stepanenko, V. M. Tereschenko, "Ultra wideband double ridged horns with rectangular aperture," in 4th International Conference on Antenna Theory and Techniques (Cat. No.03EX699) (IEEE, Washington, 2003). DOI: https://doi.org/10.1109/ICATT.2003.1238812.

    Google Scholar 

  18. 18

    F. F. Dubrovka, S. Y. Martyniuk, P. Y. Stepanenko, O. O. Vtorov, M. M. Grishko, V. V. Yakovlev, "Coaxial line–H-waveguide adapter," UA Patent 86630 (2009).

  19. 19

    F. F. Dubrovka, A. J. Sushko, "Improvement of characteristics of UWB double ridged horn antennas," in 2010 5th International Confernce on Ultrawideband and Ultrashort Impulse Signals (IEEE, Washington, 2010). DOI: https://doi.org/10.1109/UWBUSIS.2010.5609086.

    Google Scholar 

  20. 20

    F. F. Dubrovka, S. I. Piltyay, "A high performance ultrawideband orthomode transducer and a dual-polarized quad-ridged horn antenna based on it," in 2011 VIII International Conference on Antenna Theory and Techniques (IEEE, 2011). DOI: https://doi.org/10.1109/ICATT.2011.6170737.

    Google Scholar 

  21. 21

    S. He, L. Chang, Z. Z. Chen, "Design of a compact biconical antenna loaded with magnetic dipoles," IEEE Antennas Wirel. Propag. Lett., v.16, p.840 (2017). DOI: https://doi.org/10.1109/LAWP.2016.2608920.

    Article  Google Scholar 

  22. 22

    R. C. Johnson, H. B. Crawford, H. Jasik, Antenna Engineering Handbook (McGraw-Hill, New York, NY, 1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fedor F. Dubrovka.

Ethics declarations

ADDITIONAL INFORMATION

F. F. Dubrovka and S. I. Piltyay

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020120018 with DOI: https://doi.org/10.20535/S0021347020120018

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubrovka, F.F., Piltyay, S.I. Ultrawideband Microwave Biconical High-Gain Antenna for Dual-Band Systems of Omnidirectional Radio Monitoring. Radioelectron.Commun.Syst. 63, 619–632 (2020). https://doi.org/10.3103/S0735272720120018

Download citation