Skip to main content
Log in

Analyzing the Impact of Augmented Transistor NMOS Configuration on Parameters of 4x1 Multiplexer

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This paper represents the power and delay analysis of 4×1 multiplexer based on Augmented Transistor NMOS (AT-NMOS) configurations. Transistor’s total channel width at multiple levels are considered to determine the leakage power and delay performance at 45 nm technology. It is evaluated that the performance parameter is improved in the proposed design based on Augmented Shorted Gate-Source PMOS with NMOS (ASG-S PMOS-NMOS) configuration as compared to the 4×1 multiplexer based on Static Threshold AT-NMOS (ST-ATNMOS) configuration. Using this combination, we obtain the desired performance parameters of the design. In this paper, two types of 4×1 multiplexer models are introduced. It is shown that the leakage power can be largely reduced. The delay performance is also improved up to 5% at 1 V power supply under consideration of multiple levels of transistor’s channel width due to evaluation of differentAT-NMOSconfigurations based 4×1 multiplexer models. The simulation work has been carried out using the Cadence Analog Virtuoso Spectre Simulator at 45 nm CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Poon, A. Yan, S. J. E. Wilton, “A flexible power model for FPGAs,” Int. Conf. on Field Programmable Logic and Applications (2002), pp. 312–321. DOI: 10.1007/3-540-46117-5_33.

    Google Scholar 

  2. K. S. Khouri, N. K. Jha, “Leakage power analysis and reduction during behavioral synthesis,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 10, No. 6, 876 (2002). DOI: 10.1109/TVLSI.2002.808436.

    Article  Google Scholar 

  3. L. Shang, A. S. Kaviani, K. Bathala, “Dynamic power consumption in Virtex-II FPGA family,” Proc. of ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays (2002), pp. 157–164. DOI: 10.1145/503048.503072.

    Google Scholar 

  4. A. Gracia, “Power consumption and optimization in field programmable gate arrays,” Ph. D. thesis, Departement Communications et Electronique (Ecole Nationale Superieuredes Telecommunications, 2000).

    Google Scholar 

  5. J. W. Chun, C. Y. R. Chen, “A novel leakage power reduction technique for CMOS circuit design,” Proc. of SoC Design Conf., ISOCC, 22–23 Nov. 2010, Seoul, South Korea (IEEE, 2010), pp. 119–122. DOI: 10.1109/SOCDC. 2010.5682957.

    Google Scholar 

  6. A. Allan, D. Edenfeld, W. H. Joyner, A. B. Khang, M. Rodgers, Y. Zorian, “2001 technology roadmap for semiconductors,” Computer 35, No. 1, 42 (2002). DOI: 10.1109/2.976918.

    Article  Google Scholar 

  7. D. Sylvester, H. Kaul, “Future performance challenges in nanometer design,” Proc. of Design Automation Conf., 22 Jun. 2001, Las Vegas, NV, USA (IEEE, 2001), pp. 3–8. DOI: 10.1145/378239.378245.

    Google Scholar 

  8. J. P. Halter, F. N. Najm, “A gate-level leakage power reduction method for ultra-low power CMOS circuits,” Proc. of Custom Integrated Circuits Conf., 5–8 May 1997, Santa Clara, CA, USA (IEEE, 1997), pp. 475–478. DOI: 10.1109/CICC.1997.606670.

    Chapter  Google Scholar 

  9. T. Taun, B. Lai, “Leakage power analysis of a 90nm FPGA,” Proc. of Custom Integrated Circuits Conf., 24 Sept. 2003, San Jose, CA, USA (IEEE, 2003), pp. 57–60. DOI: 10.1109/CICC.2003.1249359.

    Google Scholar 

  10. C. H.-I. Kim, H. Soeleman, K. Roy, “Ultra-low power DLMS adaptive filter for hearing aid applications,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 11, No. 6, 1058 (2003). DOI: 10.1109/TVLSI.2003.819573.

    Article  Google Scholar 

  11. A. K. Kureshi, M. Hasan, “DTMOS based low power high speed interconnects for FPGA,” J. Computers 4, 921 (2009). DOI: 10.4304/jcp.4.10.921-926.

    Google Scholar 

  12. D. Kumar, P. Kumar, M. Pattanaik, “Performance analysis of dynamic threshold MOS (DTMOS) based 4-input multiplexer switch for low power and high speed FPGA design,” Proc. of SBCCI’10, 6–9 Sept. 2010, Sao Paulo (Brazil, 2010). DOI: 10.1145/1854153.1854156.

    Google Scholar 

  13. A. K. Singh, Digital VLSI Design (PHI publication, Eastern Economy Edition, 2011).

    Google Scholar 

  14. F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, C. Hu, “Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI,” IEEE Trans. Electron Devices 44, No. 3, 414 (1997). DOI: 10.1109/16.556151.

    Article  Google Scholar 

  15. P. Ghafari, M. Anis, M. Elmasry, “Impact of technology scaling on leakage reduction techniques,” Proc. of IEEE Northeast Workshop on Circuit and Systems, 5–8 Aug. 2007, Montreal, Que, Canada (IEEE, 2007), pp. 1405–1408. DOI: 10.1109/NEWCAS.2007.4488021.

    Google Scholar 

  16. N. H. Weste, K. Eshraghian, M. J. Smith, Principles of CMOS VLSI Design: A Systems Perspective with Velirog/VHDL Manual, 2nd ed. (Addison Wesley, 2000).

    Google Scholar 

  17. W. Yu, L. Hai, Y. Huazhong, L. Rong, W. Hui, “Simultaneous fine-grain sleep transistor placement and sizing for leakage optimization,” Proc. of 7th Int. Symp. on Quality Electronic Design, 27–29 Mar. 2006, San Jose, CA, USA (IEEE, 2006). DOI: 10.1109/ISQED.2006.117.

    Google Scholar 

  18. S. Augsburger, B. Nigolic, “Combining dual-supply, dual-threshold and transistor sizing for power reduction,” Proc. of IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors, 18 Sept. 2002, Freiberg, Germany (IEEE, 2002), pp. 316–321. DOI: 10.1109/ICCD.2002.1106788.

    Chapter  Google Scholar 

  19. V. Khandelwal, A. Srivastava, “Leakage control through fine-grained placement and sizing of sleep transistors,” Proc. of IEEE/ACMInt. Conf. on Computer Aided Design, 7–11 Nov. 2004, San Jose, CA, USA (IEEE, 2004), pp. 533–536. DOI: 10.1109/ICCAD.2004.1382635.

    Google Scholar 

  20. A. K. Singh, J. Samanta, “Different physical effects in UDSM MOSFET for delay & power estimation: A review,” Proc. of IEEE Conf. on Electrical, Electronics and Computer Science, SCEECS, 1–2 May 2002, Bhopal, India (IEEE, 2002), pp. 1–5. DOI: 10.1109/SCEECS.2012.6184747.

    Google Scholar 

  21. A. Mallik, A. Chattopadhyay, “Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications,” IEEE Trans. Electron Devices 59, No. 4, 888 (2012). DOI: 10.1109/TED.2011.2181178.

    Article  Google Scholar 

  22. J. Chen, J. Luo, Q. Wu, Z. Chai, T. Yu, Y. Dong, X. Wang, “A tunnel diode body contact structure to suppress the floating-body effect in partially depleted SOI MOSFETs,” IEEE Electron Device Lett. 32, No. 10, 1346 (2011). DOI: 10.1109/LED.2011.2162813.

    Article  Google Scholar 

  23. P. Jain, S. Akashe, “Analysis of ATPMOS configurations-based 4×1 multiplexer with estimation of power and delay,” Int. J. Electronics 101, No. 7, 1006 (2014). DOI: 10.1080/00207217.2013.805391.

    Article  Google Scholar 

  24. H. P. Rajani, K. Srimannarayan, “Novel sleep transistor techniques for low leakage power peripheral circuits,” Int. J. VLSI Design Commun. Syst. 3, No. 4, 81 (2012). DOI: 10.5121/vlsic.2012.3408.

    Article  Google Scholar 

  25. V. K. Sharma, S. Soni, “Comparison among different CMOS inverters for low leakage at different technologies,” Int. J. Applied Engineering Research 1, No. 2, 228 (2010). URI: http://ipublishing.co.in/jarvol1no12010/EIJAER1021.pdf.

    Google Scholar 

  26. M. J. Rani, S. Malarkann, “Leakage power reduction and analysis of CMOS sequential circuits,” Int. J. VLSI Design Commun. Syst. 3, No. 1, 13 (2012). DOI: 10.5121/vlsic.2012.3102.

    Article  Google Scholar 

  27. N. Lotze, Y. Manoli, “A 62mV 0.13µm CMOS standard-cell-based design technique using Schmitt-trigger logic,” IEEE J. Solid State Circuits 47, No. 1, 47 (2012). DOI: 10.1109/JSSC.2011.2167777.

    Article  Google Scholar 

  28. J. C. Kao, W.-H. Ma, S. Visvesh, M. Papaefthymiou, “Energy-efficient low-latency 600 MHz FIR with high-overdrive charge-recovery logic,” IEEE Trans. Very Large Scale Integration (VLSI) Systems 20, No. 6, 977 (2012). DOI: 10.1109/TVLSI.2011.2140346.

    Article  Google Scholar 

  29. Y. Ho, C. Chang, C. Su, “Design of a subthreshold-supply bootstrapped CMOS inverter based on an active leakage-current reduction technique,” IEEE Trans. Circuits and Systems II: Express Briefs 59, No. 1, 55 (2012). DOI: 10.1109/TCSII.2011.2174674.

    Article  Google Scholar 

  30. S. Akashe, S. Sharma, “Leakage current reduction techniques for 7T SRAM cell in 45 nm technology,” Wireless Pers. Commun. 71, No. 1, 123 (2013). DOI: 10.1007/s11277-012-0805-1.

    Article  Google Scholar 

  31. S. Soni, S. Akashe, “Enhanced power gating schemes for low leakage power and low ground bounce noise in design of ring oscillator,” Wireless Pers. Commun. 80, No. 4, 1517 (2015). DOI: 10.1007/s11277-014-2096-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Jain.

Additional information

Original Russian Text © P. Jain, A.M. Joshi, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 3, pp. 163–172.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Joshi, A.M. Analyzing the Impact of Augmented Transistor NMOS Configuration on Parameters of 4x1 Multiplexer. Radioelectron.Commun.Syst. 61, 121–127 (2018). https://doi.org/10.3103/S0735272718030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718030044

Navigation