, Volume 27, Issue 3, pp 479–497 | Cite as

Comparing functional assessments of wetlands to measurements of soil characteristics and nitrogen processing

  • Thomas E. Jordan
  • Mary Pittek Andrews
  • Ryan P. Szuch
  • Dennis F. Whigham
  • Donald E. Weller
  • Amy Deller Jacobs


One beneficial service of wetland ecosystems is the improvement of water quality through nitrogen (N) removal. However, one important N-removal process, denitrification, can produce the atmospheric pollutant nitrous oxide (N2O). Wetland biogeochemical functions, such as N processing, can be assessed by the hydrogeomorphic (HGM) approach using a suite of simple field observations made in a single visit to a wetland. HGM assessments score functions on a scale of 0–1 where 1 equals the functionality of an undisturbed reference standard wetland and 0 equals the functionality of a completely degraded wetland. We compared seasonal measurements of potential denitrification, N2O emissions, and related soil characteristics to HGM assessments of nine non-tidal riverine wetlands and seven flats wetlands in the Nanticoke River watershed in Delaware and Maryland, USA. Denitrification potential, measured as denitrification enzyme activity (DEA), was higher in riverine wetlands than in flats. DEA increased with increases in percent water-filled pore space, pH, ammonium concentration, and the percentages of N and organic carbon. DEA decreased with increases in oxidation-reduction potential (Eh) and water-table depth. The difference in DEA between riverine and flats wetlands was attributable to the differences in the correlated soil characteristics. N2O emission rates were higher on average in riverine wetlands than in flats, but the difference was not statistically significant. N2O emission rates were generally less predictable than DEA and showed only weak correlations with pH, water-table depth, and the percentage of water-filled pore space when data from riverine wetlands and flats were combined. HGM biogeochemistry function scores ranged from 0.18 to 1 for the riverine wetlands and from 0.24 to 0.98 for the flats. The scores did not correlate with N2O emission or DEA, except for summer DEA in flats, which increased with increasing score. Wetland alterations that increase soil moisture relative to reference standard conditions decrease biogeochemistry and hydrology function scores but increase DEA. Biogeochemistry function scores would more closely reflect denitrification potential if the scoring incorporated measurements of soil characteristics that correlate with DEA.

Key Words

Chesapeake Bay Delaware denitrification flats HGM Maryland nitrous oxide riverine wetland assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abrahamson, D. E. 1989. The Challenge of Global Warming. Island Press, Washington, DC, USA.Google Scholar
  2. Ambus, P. and S. Christensen. 1993. Denitrification variability and control in a riparian fen irrigated with agricultural drainage water. Soil Biology and Biochemistry 25: 915–23.CrossRefGoogle Scholar
  3. Ambus, P. and R. Lowrance. 1991. Comparison of denitrification in two riparian soils. Soil Science Society of America Journal 55: 994–97.Google Scholar
  4. Boesch, D. F., R. B. Brinsfield, and R. E. Magnien. 2001. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality 30: 303–20.PubMedCrossRefGoogle Scholar
  5. Bolin, B. P., P. J. Crutzen, P. M. Vitousek, R. G. Woodmansee, E. D. Goldberg, and R. B. Cook. 1983. Interactions of biogeochemical cycles. p. 1–40. In B. Bolin and R. B. Cook (eds.) The Major Biogeochemical Cycles and their Interactions. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  6. Boynton, W. R., W. M. Kemp, and C. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. p. 69–90. In V. Kennedy (ed.) Estuarine Comparisons. Academic Press, New York, NY, USA.Google Scholar
  7. Brinson, M. M., F. R. Hauer, L. C. Lee, W. L. Nutter, R. D. Rheinhardt, R. D. Smith, and D. Whigham. 1995. A Guidebook for Application of Hydrogeomorphic Assessments to Riverine Wetlands. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA.Technical Report WRP-DE-11.Google Scholar
  8. Clement, J. C., G. Pinay, and P. Marmonier. 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. Journal of Environmental Quality 31: 1025–37.PubMedCrossRefGoogle Scholar
  9. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–53.CrossRefGoogle Scholar
  10. Correll, D. L. 1987. Nutrients in Chesapeake Bay. p. 298–319. In S. K. Majumdar, L. W. Hall Jr., and H. M. Austin (eds.) Contaminant Problems and Management of Living Chesapeake Bay Resources. The Pennsylvania Academy of Science, Philadelphia, PA, USA.Google Scholar
  11. Davidsson, T. E. and L. Leonardson. 1997. Production of nitrous oxide in artificially flooded and drained soils. Wetlands Ecology and Management 5: 111–19.CrossRefGoogle Scholar
  12. Faulkner, S. P., W. H. Patrick Jr., and R. P. Gambrel. 1989. Field techniques for measuring soil parameters. Soil Science Society of America Journal 53: 883–90.CrossRefGoogle Scholar
  13. Fennessy, M. S., A. D. Jacobs, and M. E. Kentula. 2004. Review of Rapid Methods for Assessing Wetland Condition. U.S. Environmental Protection Agency, Washington, DC, USA. EPA/620/R-04/009.Google Scholar
  14. Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquatic Science 64: 107–17.CrossRefGoogle Scholar
  15. Flite, O. P. III, R. D. Shannon, R. R. Schnabel, and R. R. Parizek. 2001. Nitrate removal in a riparian wetland of the Appalachian Valley and Ridge physiographic province. Journal of Environmental Quality 30: 254–61.PubMedGoogle Scholar
  16. Gallegos, C. L., T. E. Jordan, and D. L. Correll. 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude and location of blooms. Limnology and Oceanography 37: 813–28.CrossRefGoogle Scholar
  17. Garcia-Monteil, D. C., P. A. Steudler, M. C. Piccolo, J. M. Melillo, C. Neill, and C. C. Cerri. 2001. Controls on soil nitrogen oxide emissions from forest and pastures in the Brazilian Amazon. Global Biogeochemical Cycles 15: 1021–30.CrossRefGoogle Scholar
  18. Groffman, P. M., A. J. Gold, and K. Addy. 2000. Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere—Global Change Science 2: 291–99.CrossRefGoogle Scholar
  19. Groffman, P. M., G. C. Hanson, E. Kiviat, and G. Stevens. 1996a. Variation in microbial biomass and activity in four different wetland types. Soil Science Society of America Journal 60: 622–29.CrossRefGoogle Scholar
  20. Groffman, P. M., G. Howard, A. J. Gold, and W. M. Nelson. 1996b. Microbial nitrate processing in shallow groundwater in a riparian forest. Journal of Environmental Quality 25: 1309–16.CrossRefGoogle Scholar
  21. Hefting, M. M., R. Bobbink, and H. de Caluwe. 2003. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32: 1194–1203.PubMedCrossRefGoogle Scholar
  22. Hefting, M., J. C. Clement, D. Dowrick, A. C. Cosandey, S. Bernal, C. Cimpian, A. Tatur, T. P. Burt, and G. Pinay. 2004. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67: 113–34.CrossRefGoogle Scholar
  23. Hill, A. R. and M. Cardaci. 2004. Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Science Society of America Journal 68: 320–25.CrossRefGoogle Scholar
  24. Hill, A. R., P. G. F. Vidon, and J. Langat. 2004. Denitrification potential in relation to lithology in five headwater riparian zones. Journal of Environmental Quality 33: 911–19.PubMedCrossRefGoogle Scholar
  25. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. E. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Zhu Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. p. 141–80. In R. W. Howarth (ed.) Nitrogen Cycling in the North Atlantic Ocean and its Watersheds. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  26. Hunter, R. G. and S. P. Faulkner. 2001. Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Science Society of America Journal 65: 1865–72.CrossRefGoogle Scholar
  27. Johnston, C. A., S. D. Bridgham, and J. P. Schubauer-Berigan. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Science Society of America Journal 65: 557–77.CrossRefGoogle Scholar
  28. Jordan, T. E., D. L. Correll, J. Miklas, and D. E. Weller. 1991a. Nutrients and chlorophyll at the interface of a watershed and an estuary. Limnology and Oceanography 36: 251–67.CrossRefGoogle Scholar
  29. Jordan, T. E., D. L. Correll, J. Miklas, and D. E. Weller. 1991b. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge. Marine Ecology Progress Series 75: 121–32.CrossRefGoogle Scholar
  30. Jordan, T. E. and D. E. Weller. 1996. Human contributions to terrestrial nitrogen flux. BioScience, 46: 655–64.CrossRefGoogle Scholar
  31. Jordan, T. E., D. E. Weller, and D. L. Correll. 1998. Denitrification in surface soils of a riparian forest: Effects of water, nitrate, and sucrose additions. Soil Biology and Biochemistry 30: 813–43.CrossRefGoogle Scholar
  32. Keller, M. and W. A. Reiners. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles 8: 399–409.CrossRefGoogle Scholar
  33. Kemp, W. M., R. R. Twilly, J. C. Stevenson, W. R. Boynton, and J. C. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Marine Technology Society Journal 17: 78–89.Google Scholar
  34. Livingstom, G. P. and G. I. Hutchinson. 1995. Enclosure based measurements of trace gas exchange: application and sources of error. p. 14–51. In P. A. Matson and R. C. Harriss (eds.) Biogenic Trace Gases: Measuring from Soil and Water. Blackwell Science, London, UK.Google Scholar
  35. Maag, M., M. Malinovsky, and S. M. Nielsen. 1997. Kinetics and temperature dependence of potential denitrification in riparian soils. Journal of Environmental Quality 26: 215–23.CrossRefGoogle Scholar
  36. Malone, T. C., L. H. Crocker, S. E. Pike, and B. W. Wendler. 1988. Influence of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series 48: 235–49.CrossRefGoogle Scholar
  37. Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, and R. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Marine Ecology Progress Series 32: 149–60.CrossRefGoogle Scholar
  38. Matson, P. A. and P. M. Vitousek. 1987. Cross-system comparison of soil nitrogen transformation and nitrous oxide flux in tropic forest ecosystems. Global Biogeochemical Cycles 1: 163–70.CrossRefGoogle Scholar
  39. Mellilo, J. M., P. A. Steudler, B. J. Feigl, C. Neill, D. Garcia, M. C. Piccolo, C. C. Cerri, and H. Tian. 2001. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. Journal of Geophysical Research 106: 34,179–34,188.CrossRefGoogle Scholar
  40. Mitsch, W. J., J. W. Day Jr, J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall, and N. Wang. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: strategies to counter a persistent ecological problem. BioScience 51: 373–88.CrossRefGoogle Scholar
  41. Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future consequences. Ophelia 41: 199–219.Google Scholar
  42. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, and W. R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, significance. Science 223: 22–27.CrossRefPubMedGoogle Scholar
  43. Pennock, D. J., C. van Kessel, R. E. Farrell, and R. A. Sutherland. 1992. Landscape-scale variations in denitrification. Soil Science Society of America Journal 56: 770–76.CrossRefGoogle Scholar
  44. Pinay, G., V. J. Black, A. M. Planty-Tabacchi, B. Gumiero, and H. Decamps. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50: 163–82.CrossRefGoogle Scholar
  45. Pinay, G., J. C. Clement, and R. J. Naiman. 2002. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environmental Management 30: 481–91.CrossRefPubMedGoogle Scholar
  46. Pinay, G., L. Roques, and A. Fabre. 1993. Spatial and temporal patterns of denitrification in a riparian forest. Journal of Applied Ecology 30: 581–91.CrossRefGoogle Scholar
  47. Rheinhardt, R. D., M. C. Rheinhardt, and M. M. Brinson. 2002. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Wet Pine Flats on Mineral Soils in the Atlantic and Gulf Coastal Plains. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. Technical Report ERDC/ELTR-02-9.Google Scholar
  48. Richardson, C. J. 1989. Freshwater wetlands: transformers, filters, or sinks? p. 25–46. In R. R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. U.S. Department of Energy Office of Science and Technology Information, Oak Ridge, TN, USA.Google Scholar
  49. Riley, R. H. and P. M. Vitousek. 1995. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology 76: 292–304.CrossRefGoogle Scholar
  50. SAS Institute Inc 2004. SAS/STAT 9.1 User’s guide. SAS Institute Inc., Cary, NC, USA.Google Scholar
  51. Saunders, D. L. and J. Kalff. 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443: 205–12.CrossRefGoogle Scholar
  52. Taft, J. L., W. R. Taylor, E. O. Hartwig, and R. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 3: 242–47.CrossRefGoogle Scholar
  53. Tiedje, J. M., S. Simkins, and P. M. Groffman. 1989. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil 115: 261–284.CrossRefGoogle Scholar
  54. Tiner, R. W. 2004. Remotely-sensed indicators for monitoring the general condition of ‘natural habitat’ in watersheds: an application for Delaware’s Nanticoke River watershed. Ecological Indicators 4: 227–43.CrossRefGoogle Scholar
  55. Tiner, R. W. 2005. Assessing cumulative loss of wetland functions in the Nanticoke River watershed using enhanced national wetlands inventory data. Wetlands 25: 405–19.CrossRefGoogle Scholar
  56. Tiner, R., M. Starr, H. Bergquist, and J. Swords. 2000. Watershed-based Wetland Characterization for Maryland’s Nanticoke River and Coastal Bays Watersheds: a Preliminary Assessment Report. U.S. Fish & Wildlife Service, National Wetlands Inventory (NWI) Program, Northeast Region, Hadley, MA, USA.Google Scholar
  57. Turner, R. E. and N. N. Rabalais. 1991. Changes in Mississippi River water quality this century. BioScience 41: 140–47.CrossRefGoogle Scholar
  58. van Oorshot, M., N. van Gaalen, E. Maltby, N. Mockler, A. Spink, and J. T. A. Verhoeven. 2000. Experimental manipulation of water levels in two French riverine grassland soils. Acta Oecologica 21: 49–62.CrossRefGoogle Scholar
  59. Velthof, G. L., S. C. Jarvis, A. Stein, A. G. Allen, and O. Oenema. 1996. Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28: 1215–25.CrossRefGoogle Scholar
  60. Weller, D. E., D. L. Correll, and T. E. Jordan. 1994. Denitrification in riparian forests receiving agricultural discharges. p. 117–31. In W. Mitsch (ed.) Global Wetlands: Old World and New. Elsevier Science B. V., Amsterdam, The Netherlands.Google Scholar
  61. Weller, D. E., M. N. Snyder, D. F. Whigham, A. D. Jacobs, and T. E. Jordan. 2007. Landscape indicators of wetland condition in the Nanticoke River watershed. Wetlands 27: 498–514.CrossRefGoogle Scholar
  62. Whigham, D. F., A. D. Jacobs, D. E. Weller, T. E. Jordan, M. E. Kentula, S. F. Hornsby, and D. L. Stevens, Jr. 2007. Combining HGM and EMAP procedures to assess wetlands at the watershed scale—status of flats and non-tidal riverine wetlands in the Nanticoke River watershed, Delaware and Maryland (USA). Wetlands 27: 462–78.CrossRefGoogle Scholar
  63. Whigham, D. F., L. C. Lee, M. M. Brinson, R. D. Rheinhardt, M. C. Rains, J. A. Mason, H. Khan, M. B. Ruhlman, and W. L. Nutter. 1999. Hydrogeomorphic (HGM) assessment—a test of user consistency. Wetlands 19: 560–69.CrossRefGoogle Scholar
  64. Whigham, D. F., D. E. Weller, A. Deller Jacobs, T. E. Jordan, and M. E. Kentula. 2003. Assessing the ecological condition of wetlands at the catchment scale. Landschap 2: 99–112.Google Scholar

Copyright information

© Society of Wetland Scientists 2007

Authors and Affiliations

  • Thomas E. Jordan
    • 1
  • Mary Pittek Andrews
    • 1
  • Ryan P. Szuch
    • 1
  • Dennis F. Whigham
    • 1
  • Donald E. Weller
    • 1
  • Amy Deller Jacobs
    • 2
  1. 1.Smithsonian Environmental Research CenterEdgewaterUSA
  2. 2.The Nature Conservancy of DelawareWilmingtonUSA

Personalised recommendations