Skip to main content
Log in

Comparing functional assessments of wetlands to measurements of soil characteristics and nitrogen processing

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

One beneficial service of wetland ecosystems is the improvement of water quality through nitrogen (N) removal. However, one important N-removal process, denitrification, can produce the atmospheric pollutant nitrous oxide (N2O). Wetland biogeochemical functions, such as N processing, can be assessed by the hydrogeomorphic (HGM) approach using a suite of simple field observations made in a single visit to a wetland. HGM assessments score functions on a scale of 0–1 where 1 equals the functionality of an undisturbed reference standard wetland and 0 equals the functionality of a completely degraded wetland. We compared seasonal measurements of potential denitrification, N2O emissions, and related soil characteristics to HGM assessments of nine non-tidal riverine wetlands and seven flats wetlands in the Nanticoke River watershed in Delaware and Maryland, USA. Denitrification potential, measured as denitrification enzyme activity (DEA), was higher in riverine wetlands than in flats. DEA increased with increases in percent water-filled pore space, pH, ammonium concentration, and the percentages of N and organic carbon. DEA decreased with increases in oxidation-reduction potential (Eh) and water-table depth. The difference in DEA between riverine and flats wetlands was attributable to the differences in the correlated soil characteristics. N2O emission rates were higher on average in riverine wetlands than in flats, but the difference was not statistically significant. N2O emission rates were generally less predictable than DEA and showed only weak correlations with pH, water-table depth, and the percentage of water-filled pore space when data from riverine wetlands and flats were combined. HGM biogeochemistry function scores ranged from 0.18 to 1 for the riverine wetlands and from 0.24 to 0.98 for the flats. The scores did not correlate with N2O emission or DEA, except for summer DEA in flats, which increased with increasing score. Wetland alterations that increase soil moisture relative to reference standard conditions decrease biogeochemistry and hydrology function scores but increase DEA. Biogeochemistry function scores would more closely reflect denitrification potential if the scoring incorporated measurements of soil characteristics that correlate with DEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abrahamson, D. E. 1989. The Challenge of Global Warming. Island Press, Washington, DC, USA.

    Google Scholar 

  • Ambus, P. and S. Christensen. 1993. Denitrification variability and control in a riparian fen irrigated with agricultural drainage water. Soil Biology and Biochemistry 25: 915–23.

    Article  Google Scholar 

  • Ambus, P. and R. Lowrance. 1991. Comparison of denitrification in two riparian soils. Soil Science Society of America Journal 55: 994–97.

    Google Scholar 

  • Boesch, D. F., R. B. Brinsfield, and R. E. Magnien. 2001. Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality 30: 303–20.

    Article  CAS  PubMed  Google Scholar 

  • Bolin, B. P., P. J. Crutzen, P. M. Vitousek, R. G. Woodmansee, E. D. Goldberg, and R. B. Cook. 1983. Interactions of biogeochemical cycles. p. 1–40. In B. Bolin and R. B. Cook (eds.) The Major Biogeochemical Cycles and their Interactions. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, and C. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. p. 69–90. In V. Kennedy (ed.) Estuarine Comparisons. Academic Press, New York, NY, USA.

    Google Scholar 

  • Brinson, M. M., F. R. Hauer, L. C. Lee, W. L. Nutter, R. D. Rheinhardt, R. D. Smith, and D. Whigham. 1995. A Guidebook for Application of Hydrogeomorphic Assessments to Riverine Wetlands. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA.Technical Report WRP-DE-11.

    Google Scholar 

  • Clement, J. C., G. Pinay, and P. Marmonier. 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. Journal of Environmental Quality 31: 1025–37.

    Article  CAS  PubMed  Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–53.

    Article  CAS  Google Scholar 

  • Correll, D. L. 1987. Nutrients in Chesapeake Bay. p. 298–319. In S. K. Majumdar, L. W. Hall Jr., and H. M. Austin (eds.) Contaminant Problems and Management of Living Chesapeake Bay Resources. The Pennsylvania Academy of Science, Philadelphia, PA, USA.

    Google Scholar 

  • Davidsson, T. E. and L. Leonardson. 1997. Production of nitrous oxide in artificially flooded and drained soils. Wetlands Ecology and Management 5: 111–19.

    Article  CAS  Google Scholar 

  • Faulkner, S. P., W. H. Patrick Jr., and R. P. Gambrel. 1989. Field techniques for measuring soil parameters. Soil Science Society of America Journal 53: 883–90.

    Article  CAS  Google Scholar 

  • Fennessy, M. S., A. D. Jacobs, and M. E. Kentula. 2004. Review of Rapid Methods for Assessing Wetland Condition. U.S. Environmental Protection Agency, Washington, DC, USA. EPA/620/R-04/009.

    Google Scholar 

  • Findlay, S. E. G., E. Kiviat, W. C. Nieder, and E. A. Blair. 2002. Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquatic Science 64: 107–17.

    Article  Google Scholar 

  • Flite, O. P. III, R. D. Shannon, R. R. Schnabel, and R. R. Parizek. 2001. Nitrate removal in a riparian wetland of the Appalachian Valley and Ridge physiographic province. Journal of Environmental Quality 30: 254–61.

    CAS  PubMed  Google Scholar 

  • Gallegos, C. L., T. E. Jordan, and D. L. Correll. 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude and location of blooms. Limnology and Oceanography 37: 813–28.

    Article  CAS  Google Scholar 

  • Garcia-Monteil, D. C., P. A. Steudler, M. C. Piccolo, J. M. Melillo, C. Neill, and C. C. Cerri. 2001. Controls on soil nitrogen oxide emissions from forest and pastures in the Brazilian Amazon. Global Biogeochemical Cycles 15: 1021–30.

    Article  Google Scholar 

  • Groffman, P. M., A. J. Gold, and K. Addy. 2000. Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere—Global Change Science 2: 291–99.

    Article  CAS  Google Scholar 

  • Groffman, P. M., G. C. Hanson, E. Kiviat, and G. Stevens. 1996a. Variation in microbial biomass and activity in four different wetland types. Soil Science Society of America Journal 60: 622–29.

    Article  CAS  Google Scholar 

  • Groffman, P. M., G. Howard, A. J. Gold, and W. M. Nelson. 1996b. Microbial nitrate processing in shallow groundwater in a riparian forest. Journal of Environmental Quality 25: 1309–16.

    Article  CAS  Google Scholar 

  • Hefting, M. M., R. Bobbink, and H. de Caluwe. 2003. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32: 1194–1203.

    Article  CAS  PubMed  Google Scholar 

  • Hefting, M., J. C. Clement, D. Dowrick, A. C. Cosandey, S. Bernal, C. Cimpian, A. Tatur, T. P. Burt, and G. Pinay. 2004. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67: 113–34.

    Article  CAS  Google Scholar 

  • Hill, A. R. and M. Cardaci. 2004. Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Science Society of America Journal 68: 320–25.

    Article  CAS  Google Scholar 

  • Hill, A. R., P. G. F. Vidon, and J. Langat. 2004. Denitrification potential in relation to lithology in five headwater riparian zones. Journal of Environmental Quality 33: 911–19.

    Article  CAS  PubMed  Google Scholar 

  • Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. E. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Zhu Zhao-Liang. 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. p. 141–80. In R. W. Howarth (ed.) Nitrogen Cycling in the North Atlantic Ocean and its Watersheds. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hunter, R. G. and S. P. Faulkner. 2001. Denitrification potentials in restored and natural bottomland hardwood wetlands. Soil Science Society of America Journal 65: 1865–72.

    Article  CAS  Google Scholar 

  • Johnston, C. A., S. D. Bridgham, and J. P. Schubauer-Berigan. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Science Society of America Journal 65: 557–77.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, and D. E. Weller. 1991a. Nutrients and chlorophyll at the interface of a watershed and an estuary. Limnology and Oceanography 36: 251–67.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, and D. E. Weller. 1991b. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge. Marine Ecology Progress Series 75: 121–32.

    Article  Google Scholar 

  • Jordan, T. E. and D. E. Weller. 1996. Human contributions to terrestrial nitrogen flux. BioScience, 46: 655–64.

    Article  Google Scholar 

  • Jordan, T. E., D. E. Weller, and D. L. Correll. 1998. Denitrification in surface soils of a riparian forest: Effects of water, nitrate, and sucrose additions. Soil Biology and Biochemistry 30: 813–43.

    Article  Google Scholar 

  • Keller, M. and W. A. Reiners. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles 8: 399–409.

    Article  CAS  Google Scholar 

  • Kemp, W. M., R. R. Twilly, J. C. Stevenson, W. R. Boynton, and J. C. Means. 1983. The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Marine Technology Society Journal 17: 78–89.

    Google Scholar 

  • Livingstom, G. P. and G. I. Hutchinson. 1995. Enclosure based measurements of trace gas exchange: application and sources of error. p. 14–51. In P. A. Matson and R. C. Harriss (eds.) Biogenic Trace Gases: Measuring from Soil and Water. Blackwell Science, London, UK.

    Google Scholar 

  • Maag, M., M. Malinovsky, and S. M. Nielsen. 1997. Kinetics and temperature dependence of potential denitrification in riparian soils. Journal of Environmental Quality 26: 215–23.

    Article  CAS  Google Scholar 

  • Malone, T. C., L. H. Crocker, S. E. Pike, and B. W. Wendler. 1988. Influence of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series 48: 235–49.

    Article  Google Scholar 

  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, and R. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Marine Ecology Progress Series 32: 149–60.

    Article  Google Scholar 

  • Matson, P. A. and P. M. Vitousek. 1987. Cross-system comparison of soil nitrogen transformation and nitrous oxide flux in tropic forest ecosystems. Global Biogeochemical Cycles 1: 163–70.

    Article  CAS  Google Scholar 

  • Mellilo, J. M., P. A. Steudler, B. J. Feigl, C. Neill, D. Garcia, M. C. Piccolo, C. C. Cerri, and H. Tian. 2001. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. Journal of Geophysical Research 106: 34,179–34,188.

    Article  Google Scholar 

  • Mitsch, W. J., J. W. Day Jr, J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall, and N. Wang. 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: strategies to counter a persistent ecological problem. BioScience 51: 373–88.

    Article  Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future consequences. Ophelia 41: 199–219.

    Google Scholar 

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, and W. R. Boynton. 1984. Chesapeake Bay anoxia: origin, development, significance. Science 223: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Pennock, D. J., C. van Kessel, R. E. Farrell, and R. A. Sutherland. 1992. Landscape-scale variations in denitrification. Soil Science Society of America Journal 56: 770–76.

    Article  Google Scholar 

  • Pinay, G., V. J. Black, A. M. Planty-Tabacchi, B. Gumiero, and H. Decamps. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50: 163–82.

    Article  Google Scholar 

  • Pinay, G., J. C. Clement, and R. J. Naiman. 2002. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environmental Management 30: 481–91.

    Article  PubMed  Google Scholar 

  • Pinay, G., L. Roques, and A. Fabre. 1993. Spatial and temporal patterns of denitrification in a riparian forest. Journal of Applied Ecology 30: 581–91.

    Article  Google Scholar 

  • Rheinhardt, R. D., M. C. Rheinhardt, and M. M. Brinson. 2002. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Wet Pine Flats on Mineral Soils in the Atlantic and Gulf Coastal Plains. U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. Technical Report ERDC/ELTR-02-9.

    Google Scholar 

  • Richardson, C. J. 1989. Freshwater wetlands: transformers, filters, or sinks? p. 25–46. In R. R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. U.S. Department of Energy Office of Science and Technology Information, Oak Ridge, TN, USA.

    Google Scholar 

  • Riley, R. H. and P. M. Vitousek. 1995. Nutrient dynamics and nitrogen trace gas flux during ecosystem development in montane rain forest. Ecology 76: 292–304.

    Article  Google Scholar 

  • SAS Institute Inc 2004. SAS/STAT 9.1 User’s guide. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • Saunders, D. L. and J. Kalff. 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443: 205–12.

    Article  CAS  Google Scholar 

  • Taft, J. L., W. R. Taylor, E. O. Hartwig, and R. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 3: 242–47.

    Article  Google Scholar 

  • Tiedje, J. M., S. Simkins, and P. M. Groffman. 1989. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil 115: 261–284.

    Article  Google Scholar 

  • Tiner, R. W. 2004. Remotely-sensed indicators for monitoring the general condition of ‘natural habitat’ in watersheds: an application for Delaware’s Nanticoke River watershed. Ecological Indicators 4: 227–43.

    Article  Google Scholar 

  • Tiner, R. W. 2005. Assessing cumulative loss of wetland functions in the Nanticoke River watershed using enhanced national wetlands inventory data. Wetlands 25: 405–19.

    Article  Google Scholar 

  • Tiner, R., M. Starr, H. Bergquist, and J. Swords. 2000. Watershed-based Wetland Characterization for Maryland’s Nanticoke River and Coastal Bays Watersheds: a Preliminary Assessment Report. U.S. Fish & Wildlife Service, National Wetlands Inventory (NWI) Program, Northeast Region, Hadley, MA, USA.

    Google Scholar 

  • Turner, R. E. and N. N. Rabalais. 1991. Changes in Mississippi River water quality this century. BioScience 41: 140–47.

    Article  Google Scholar 

  • van Oorshot, M., N. van Gaalen, E. Maltby, N. Mockler, A. Spink, and J. T. A. Verhoeven. 2000. Experimental manipulation of water levels in two French riverine grassland soils. Acta Oecologica 21: 49–62.

    Article  Google Scholar 

  • Velthof, G. L., S. C. Jarvis, A. Stein, A. G. Allen, and O. Oenema. 1996. Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28: 1215–25.

    Article  CAS  Google Scholar 

  • Weller, D. E., D. L. Correll, and T. E. Jordan. 1994. Denitrification in riparian forests receiving agricultural discharges. p. 117–31. In W. Mitsch (ed.) Global Wetlands: Old World and New. Elsevier Science B. V., Amsterdam, The Netherlands.

    Google Scholar 

  • Weller, D. E., M. N. Snyder, D. F. Whigham, A. D. Jacobs, and T. E. Jordan. 2007. Landscape indicators of wetland condition in the Nanticoke River watershed. Wetlands 27: 498–514.

    Article  Google Scholar 

  • Whigham, D. F., A. D. Jacobs, D. E. Weller, T. E. Jordan, M. E. Kentula, S. F. Hornsby, and D. L. Stevens, Jr. 2007. Combining HGM and EMAP procedures to assess wetlands at the watershed scale—status of flats and non-tidal riverine wetlands in the Nanticoke River watershed, Delaware and Maryland (USA). Wetlands 27: 462–78.

    Article  Google Scholar 

  • Whigham, D. F., L. C. Lee, M. M. Brinson, R. D. Rheinhardt, M. C. Rains, J. A. Mason, H. Khan, M. B. Ruhlman, and W. L. Nutter. 1999. Hydrogeomorphic (HGM) assessment—a test of user consistency. Wetlands 19: 560–69.

    Article  Google Scholar 

  • Whigham, D. F., D. E. Weller, A. Deller Jacobs, T. E. Jordan, and M. E. Kentula. 2003. Assessing the ecological condition of wetlands at the catchment scale. Landschap 2: 99–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, T.E., Andrews, M.P., Szuch, R.P. et al. Comparing functional assessments of wetlands to measurements of soil characteristics and nitrogen processing. Wetlands 27, 479–497 (2007). https://doi.org/10.1672/0277-5212(2007)27[479:CFAOWT]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[479:CFAOWT]2.0.CO;2

Key Words

Navigation