Properties of a general quaternion-valued gradient operator and its applications to signal processing

Article

Abstract

The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms. The HR gradient operator provides a viable framework and has found a number of applications. However, the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions. To generalize the operator to nonlinear quaternion functions, we define a restricted version of the HR operator, which comes in two versions, the left and the right ones. We then present a detailed analysis of the properties of the operators, including several different product rules and chain rules. Using the new rules, we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions, and prove that the restricted HR gradients are consistent with the gradients in the real domain. As an application, the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided. Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.

Keywords

Quaternion Gradient operator Signal processing Least mean square (LMS) algorithm Nonlinear adaptive filtering Adaptive beamforming 

CLC number

TN911.7 O29 

References

  1. Barthelemy, Q., Larue, A., Mars, J.I., 2014. About QLMS derivations. IEEE Signal Process. Lett., 21(2):240–243. http://dx.doi.org/10.1109/LSP.2014.2299066CrossRefGoogle Scholar
  2. Brandwood, D.H., 1983. A complex gradient operator and its application in adaptive array theory. IEE Proc. F, 130(1):11–16. http://dx.doi.org/10.1049/ip-f-1.1983.0003MathSciNetGoogle Scholar
  3. Compton, R.T., 1981. On the performance of a polarization sensitive adaptive array. IEEE Trans. Antenn. Propag., 29(5):718–725. http://dx.doi.org/10.1109/TAP.1981.1142651CrossRefGoogle Scholar
  4. Ell, T.A., Sangwine, S.J., 2007. Quaternion involutions and anti-involutions. Comput. Math. Appl., 53(1):137–143. http://dx.doi.org/10.1016/j.camwa.2006.10.029MathSciNetCrossRefGoogle Scholar
  5. Ell, T.A., Le Bihan, N., Sangwine, S.J., 2014. Quaternion Fourier Transforms for Signal and Image Processing. Wiley, UK.CrossRefMATHGoogle Scholar
  6. Gentili, G., Struppa, D.C., 2007. A new theory of regular functions of a quaternionic variable. Adv. Math., 216(1):279–301. http://dx.doi.org/10.1016/j.aim.2007.05.010MathSciNetCrossRefGoogle Scholar
  7. Hawes, M., Liu, W., 2015. Design of fixed beamformers based on vector-sensor arrays. Int. J. Antenn. Propag., 2015:181937.1–181937.9. http://dx.doi.org/10.1155/2015/181937CrossRefGoogle Scholar
  8. Jiang, M.D., Li, Y., Liu, W., 2014a. Properties and applications of a restricted HR gradient operator. arXiv:1407.5178.Google Scholar
  9. Jiang, M.D., Liu, W., Li, Y., 2014b. A general quaternionvalued gradient operator and its applications to computational fluid dynamics and adaptive beamforming. Proc. 19th Int. Conf. on Digital Signal Processing, p.821–826. http://dx.doi.org/10.1109/ICDSP.2014.6900781Google Scholar
  10. Jiang, M.D., Liu, W., Li, Y., 2014c. A zero-attracting quaternion-valued least mean square algorithm for sparse system identification. Proc. 9th Int. Symp. on Communication Systems, Networks and Digital Signal Processing, p.596–599. http://dx.doi.org/10.1109/CSNDSP.2014.6923898Google Scholar
  11. Le Bihan, N., Mars, J., 2004. Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process., 84(7):1177–1199. http://dx.doi.org/10.1016/j.sigpro.2004.04.001CrossRefGoogle Scholar
  12. Le Bihan, N., Miron, S., Mars, J.I., 2007. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Trans. Signal Process., 55(9):4523–4533. http://dx.doi.org/10.1109/TSP.2007.896067MathSciNetCrossRefGoogle Scholar
  13. Li, J., Compton, R.T., 1991. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antenn. Propag., 39:1376–1376. http://dx.doi.org/10.1109/8.99047CrossRefGoogle Scholar
  14. Liu, H., Zhou, Y.L., Gu, Z.P., 2014. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(11):999–1008. http://dx.doi.org/10.1631/jzus.C1400038CrossRefGoogle Scholar
  15. Liu, W., 2014. Antenna array signal processing for a quaternion-valued wireless communication system. Proc. IEEE Benjamin Franklin Symp. on Microwave and Antenna Sub-systems, arXiv:1504.02921.Google Scholar
  16. Liu, W., Weiss, S., 2010. Wideband Beamforming: Concepts and Techniques. Wiley, UK.CrossRefGoogle Scholar
  17. Mandic, D.P., Jahanchahi, C., Took, C.C., 2011. A quaternion gradient operator and its applications. IEEE Signal Process. Lett., 18(1):47–50. http://dx.doi.org/10.1109/LSP.2010.2091126CrossRefGoogle Scholar
  18. Miron, S., Le Bihan, N., Mars, J.I., 2006. Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process., 54(4):1218–1229. http://dx.doi.org/10.1109/TSP.2006.870630CrossRefGoogle Scholar
  19. Parfieniuk, M., Petrovsky, A., 2010. Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Process., 90(6):1755–1767. http://dx.doi.org/10.1016/j.sigpro.2010.01.008CrossRefGoogle Scholar
  20. Pei, S.C., Cheng, C.M., 1999. Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Trans. Image Process., 8(5):614–628. http://dx.doi.org/10.1109/83.760310CrossRefGoogle Scholar
  21. Roberts, M.K., Jayabalan, R., 2015. An improved lowcomplexity sum-product decoding algorithm for lowdensity parity-check codes. Front. Inform. Technol. Electron. Eng., 16(6):511–518. http://dx.doi.org/10.1631/FITEE.1400269CrossRefGoogle Scholar
  22. Sangwine, S.J., Ell, T.A., 2000. The discrete Fourier transform of a colour image. Proc. Image Processing II: Mathematical Methods, Algorithms and Applications, p.430–441.Google Scholar
  23. Talebi, S.P., Mandic, D.P., 2015. A quaternion frequency estimator for three-phase power systems. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3956–3960. http://dx.doi.org/10.1109/ICASSP.2015.7178713Google Scholar
  24. Talebi, S.P., Xu, D.P., Kuh, A., et al., 2014. A quaternion least mean phase adaptive estimator. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6419–6423. http://dx.doi.org/10.1109/ICASSP.2014.6854840Google Scholar
  25. Tao, J.W., 2013. Performance analysis for interference and noise canceller based on hypercomplex and spatiotemporal-polarisation processes. IET Radar Sonar Navig., 7(3):277–286. http://dx.doi.org/10.1049/iet-rsn.2012.0151CrossRefGoogle Scholar
  26. Tao, J.W., Chang, W.X., 2014. Adaptive beamforming based on complex quaternion processes. Math. Prob. Eng., 2014:291249.1–291249.10. http://dx.doi.org/10.1155/2014/291249Google Scholar
  27. Zhang, X.R., Liu, W., Xu, Y.G., et al., 2014. Quaternionvalued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint. Signal Process., 104:274–274. http://dx.doi.org/10.1016/j.sigpro.2014.04.006CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK
  2. 2.School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK

Personalised recommendations