Skip to main content
Log in

Reinhard Kahle, Michael Rathjen (eds.): “Gentzen’s Centenary, The Quest for Consistency”

Springer, 2015, 561 pp.

  • Book Review
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Dedekind’s definition assumed the existence of the system of all systems, i.e., a universal set. Cantor pointed out in letters to Dedekind and Hilbert in 1899 that this multiplicity is “inconsistent”; he had discussed the distinction between consistent and inconsistent multiplicities already in earlier letters.

  2. [8], pp. 11–13. From a modern perspective one might call a particular system that falls under an abstract notion or satisfies its characteristic conditions a “model”. In [26] Hilbert gave the standard analytic model for Euclidean geometry, but he constructed also a geometric model for a complete ordered field via his “Streckenrechnung”; one could not make a more convincing case of the irrelevance of the nature of the mathematical objects from such a structuralist perspective.

  3. The notes of these stunning lectures were written by Paul Bernays who had joined Hilbert that very term as assistant for the foundations of mathematics; they literally form the core of the book Grundzüge der theoretischen Logik that was published only in 1928 with Hilbert and Wilhelm Ackermann as authors. All of the lecture notes from 1917–18 onward as well as the Grundzüge can be found in [7].

  4. Neither in these lectures nor in their publications does one find a precise articulation of finitist mathematics. It seems, that it is taken to be “familiar” as described, for example, in Felix Bernstein’s article [2]. Bernays and members of the wider Hilbert circle, like Jacques Herbrand and Johan von Neumann, considered finitist and intuitionist mathematics as co-extensional.

  5. Eckhard Menzler-Trott’s Gentzen biography, Logic’s Lost Genius—The life of Gerhard Gentzen, was published in 2007 by the American and the London Mathematical Society. It is full of rich, detailed information that is crucial also for those who do not share Menzler-Trott’s perspective on the intellectual context of Gentzen’s work, for example, the connection to Hilbert and Bernays’ proof theory.

  6. Ironically, Gödel in his attempt to reach that very goal was led to a version of his first incompleteness theorem in August of 1930.

  7. Gentzen’s discovery in [10] was simultaneous with that of Gödel in [17], who also reduced classical number theory to its intuitionist version. After learning of Gödel’s publication Gentzen withdrew his paper; it was posthumously published in 1974.

  8. The emergence of this proof and the conceptual difficulties Gentzen faced (and ingeniously overcame) are analyzed in my paper In the shadow of incompleteness: Hilbert and Gentzen [35]. The starting-point for Gentzen’s work is Hilbert’s last paper [32] in which Hilbert takes an extended foundational standpoint for giving consistency proofs: he argues for the finitist correctness of a constructive theory that includes intuitionist number theory and tries to prove that adding instances of tertium non datur does not lead to contradictions. Hilbert’s paper is a bridge between his earlier proof theory and Gentzen’s work. That is in contrast to the perspectives articulated in two contributions to this volume, namely, Michael Detlefsen’s Gentzen’s Anti-Formalist Views and von Plato’s From Hauptsatz to Hilfssatz.

  9. To articulate what a “natural” or “canonical” system of ordinal notations is, that is a significant methodological problem for contemporary proof theory.

  10. Mints was also, as the editors emphasize, “one of the leading executors of Gentzen’s legacy”. He died on 30 May 2014. In deep respect, this volume is dedicated to his memory.

  11. This part of second-order number theory is standardly denoted by \((\Pi^{1}_{1}\mbox{-CA})_{0}\). It has both an ordinal analysis and a reduction to a thoroughly constructive theory, namely, the theory of the finite constructive number classes; these results were already established in [3].

  12. That, in turn, is the starting point of the automated search for humanly intelligible proofs or, what Gowers calls, human centered automatic theorem proving. See, for example, the 2016 interview presented in the Notices of the American Mathematical Society 63 (9), 1026–1028.

References

  1. Ackermann, W.: Zur Widerspruchsfreiheit der Zahlentheorie. Mathematische Annalen 117, 162–194 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, F.: In: Die Mengenlehre Georg Cantors und der Finitismus. Jahresbericht der DMV, vol. 28, pp. 63–78 (1919)

    Google Scholar 

  3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis: Recent proof-theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  4. Collatz, L.: Vorlesungsnachschrift zu Hilbert: Mengenlehre. Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, Hamburg (1929). 83 pages

    Google Scholar 

  5. Dedekind, R.: Was sind und was sollen die Zahlen? Vieweg, Wiesbaden (1888)

    MATH  Google Scholar 

  6. Dedekind, R.: Letter to Keferstein. In: van Heijenoort, J. (ed.) From Frege to Gödel: A sourcebook of mathematical logic 1879–1931, pp. 98–103. Harvard University Press, Cambridge (1890)

    Google Scholar 

  7. Ewald, W.B., Sieg, W. (eds.): David Hilbert’s lectures on the foundations of arithmetic and logic 1917–1933. Springer, Berlin (2013)

    MATH  Google Scholar 

  8. Frege, G.: Gottlob Freges Briefwechsel. Gabriel, G., Kambartel, F., Thiel, C. (eds.). Felix Meiner Verlag (1980)

  9. Gentzen, G.: Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen. Mathematische Annalen 107, 329–350 (1932)

    Article  MATH  Google Scholar 

  10. Gentzen, G.: Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik (1933). Archiv für mathematische Logik und Grundlagenforschung 16, 119–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gentzen, G.: Untersuchungen über das logische Schließen I, II. Mathematische Zeitschrift 39, 176–210 (1934). 405–431

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentzen, G.: Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie (1935). Archiv für mathematische Logik und Grundlagenforschung 16, 97–118 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen 112, 493–565 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gentzen, G.: Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschung zur Logik und zur Grundlegung der exakten Wissenschaften. Neue Folge, vol. 4, pp. 19–44. Hirzel, Leipzig (1938)

    Google Scholar 

  15. Gentzen, G.: Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen 119, 140–161 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathemtica und verwandter Systeme I (1931). Reprinted and translated in [23], pp. 123–195

  17. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie (1933). Reprinted and translated in [23], pp. 286–295

  18. Gödel, K.: On undecidable propositions of formal mathematical systems (1934). Reprinted in [23], pp. 346–396

  19. Gödel, K.: Vortrag bei Zilsel (1938). Published and translated in [25], pp. 85–113

  20. Gödel, K.: In what sense is intuitionistic logic constructive? (1941). In [25], pp. 189–200

  21. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes (1958). Reprinted and translated in [24], pp. 240–251

  22. Gödel, K.: Postscriptum (to [18]) (1964). Reprinted in [23], pp. 369–371

  23. Gödel, K.: Collected Works, Vol. I. Oxford University Press, London (1986)

    MATH  Google Scholar 

  24. Gödel, K.: Collected Works, Vol. II. Oxford University Press, London (1990)

    MATH  Google Scholar 

  25. Gödel, K.: Collected Works, Vol. III. Oxford University Press, London (1995)

    Google Scholar 

  26. Hilbert, D.: Grundlagen der Geometrie. In: Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, pp. 1–92. Teubner, Leipzig (1899)

    Google Scholar 

  27. Hilbert, D.: Über den Zahlbegriff. Jahresbericht der DMV 8, 180–194 (1900)

    MATH  Google Scholar 

  28. Hilbert, D.: Mathematische Probleme. In: Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen pp. 253–297. (1900a)

    Google Scholar 

  29. Hilbert, D.: Über die Grundlagen der Logik und der Arithmetik. In: Verhandlungen des Dritten Internationalen Mathematiker-Kongresses, pp. 174–185. Teubner, Leipzig (1905)

    Google Scholar 

  30. Hilbert, D.: Die logischen Grundlagen der Mathematik. Mathematische Annalen 88, 151–165 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hilbert, D.: Probleme der Grundlegung der Mathematik. Mathematische Annalen 102, 1–9 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hilbert, D.: Beweis des tertium non datur. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, pp. 120–125 (1931)

    Google Scholar 

  33. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. I. Springer, Berlin (1934)

    MATH  Google Scholar 

  34. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer, Berlin (1939)

    MATH  Google Scholar 

  35. Sieg, W.: In the shadow of incompleteness: Hilbert and Gentzen. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds.) Epistemology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf, pp. 87–127. Springer, Berlin (2011). Reprinted in Sieg (2013), pp. 155–192

    Google Scholar 

  36. Sieg, W.: Hilbert’s Programs and Beyond. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Sieg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieg, W. Reinhard Kahle, Michael Rathjen (eds.): “Gentzen’s Centenary, The Quest for Consistency”. Jahresber. Dtsch. Math. Ver. 119, 201–211 (2017). https://doi.org/10.1365/s13291-017-0163-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-017-0163-8

Navigation