, Volume 69, Issue 5–6, pp 561–566 | Cite as

Simultaneous Determination of Four Active Components in Tobacco Wastes by LC

  • Jun Wang
  • Ding-Qiang Lu
  • Xiu-Quan Ling
  • Jia-Li Wang
  • Hong-Qun Qiao
  • Ping-Kai Ouyang
Full Short Communication


A liquid chromatographic method was developed for the simultaneous quantification of four major active components in tobacco (Nicotiana tobaccum L.) wastes. Samples were extracted with 70% v/v aqueous methanol, four compounds including chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid and caffeic acid were identified and determined by using LC coupled to electrospray tandem mass spectrometry and LC–UV method, respectively. Separation in LC–UV was on an Alltima C18 column (250 mm × 4.6 mm i.d.; 5 μm) with a mobile phase consisting acetonitrile: ammonium acetate buffer (pH 4.5) (5:95 v/v), at a flow rate of 1.0 mL min−1, detected at 327 nm. Four regression equations showed good linear relationships (r 2 > 0.999) between the peak area of each marker and concentration. The method has good repeatability and precision, the intra-day and inter-day RSD for both retention time and peak area was less than 1.0%. The recoveries, measured at three concentration levels, varied from 96.33 to 101.10%. The LOD (S/N = 3) and LOQ (S/N = 6) were less than 0.010 and 0.795 μg·mL−1, respectively. This assay was successfully applied to the determination of four active compounds in ten samples. The results indicated that the developed assay method was rapid, accurate, reliable and could be readily utilized as a quantitative analysis method for various of tobacco wastes.


Column liquid chromatography Tandem mass spectrometry LC–UV Tobacco wastes Chlorogenic, cryptochlorogenic, neochlorogenic and caffeic acids 



This work was supported by the National Basic Research Program (2003CB716000) and the National Natural Science Foundation of China (Project No. 20876076).


  1. 1.
    Zhu X, Zheng F, Cao Z (2006) Acta Tabacaria Sin 12(4):58–64Google Scholar
  2. 2.
    Marcello CC (1997) Waste Manag Res 15:349–358Google Scholar
  3. 3.
    Crofcheck C, Loiselle M, Weekley J, Maiti I, Pattanaik S, Bummer PM, Jay M (2003) Biotechnol Prog 19(2):680–682. doi: 10.1021/bp025738u CrossRefGoogle Scholar
  4. 4.
    Zhao C, Li C, Zu Y (2007) J Pharm Biomed Anal 44(1):35–40. doi: 10.1016/j.jpba.2007.01.021 CrossRefGoogle Scholar
  5. 5.
    Howles P, Masoud SA, Blount JW, Rasmussen S, Lamb C, Dixon RA (1999) Curr Plant Sci Biotechnol Agric (Plant Biotechnology and In Vitro Biology in the 21st Century) 36:297–301 Google Scholar
  6. 6.
    Du X, Yuan Q, Zhao J, Li Y (2007) J Chromatogr A 1145(1–2):165–174. doi: 10.1016/j.chroma.2007.01.065 CrossRefGoogle Scholar
  7. 7.
    Cui H, He C, Zhao G (1999) J Chromatogr A 855(1):171–179. doi: 10.1016/S0021-9673(99)00670-6 CrossRefGoogle Scholar
  8. 8.
    Jiang HL, He YZ, Zhao HZ, Hu YY (2004) Anal Chim Acta 512(1):111–119. doi: 10.1016/j.aca.2004.02.021 CrossRefGoogle Scholar
  9. 9.
    Clifford MN, Knight S, Kuhnert N (2005) J Agric Food Chem 53(10):3821–3832. doi: 10.1021/jf050046h CrossRefGoogle Scholar
  10. 10.
    Clifford MN, Wu W, Kirkpatrick J, Kuhnert N (2007) J Agric Food Chem 55(3):929–936. doi: 10.1021/jf062314x CrossRefGoogle Scholar
  11. 11.
    Laranjinha J, Vierira O, Almeida L, Madeira V (1996) Biochem Pharmacol 51(4):395–402. doi: 10.1016/0006-2952(95)02171-X CrossRefGoogle Scholar
  12. 12.
    Arion WJ, Canfield WK, Ramos FC, Schindler PW, Burger HJ, Hemmerle H, Schubert G, Below P, Herling AW (1997) Arch Biochem Biophys 339(2):315–322. doi: 10.1006/abbi.1996.9874 CrossRefGoogle Scholar
  13. 13.
    Kim SS, Lee CK, Kang SS, Jung HA, Choi JS (1997) Arch Pharm Res 20(2):148–154CrossRefGoogle Scholar
  14. 14.
    Borkowski B, Skuza G, Rogoz Z (1999) Herba Pol 45(3):192–198Google Scholar
  15. 15.
    Plumb GW, Garcia-conesa MT, Kroon PA, Rhodes M, Ridley S, Williamson G (1999) J Sci Food Agric 79(3):390–392. doi:10.1002/(SICI)1097-0010(19990301)79:3<390::AID-JSFA258>3.0.CO;2-0CrossRefGoogle Scholar
  16. 16.
    Morishita H, Ohnishi M (2001) Stud Nat Prod Chem (Bioactive Natural Products (Part F)) 25:919–953CrossRefGoogle Scholar
  17. 17.
    Ramalakshmi K, Rahath KI, Jagan MR (2008) Food Res Int 41(1):96–103. doi: 10.1016/j.foodres.2007.10.003 CrossRefGoogle Scholar
  18. 18.
    Ma CM, Kully M, Khan JK, Hattori M, Daneshtalab M (2007) Bioorg Med Chem 15(21):6830–6833. doi: 10.1016/j.bmc.2007.07.038 CrossRefGoogle Scholar
  19. 19.
    Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) J Agric Food Chem 51(10):2900–2911. doi: 10.1021/jf026187q CrossRefGoogle Scholar
  20. 20.
    Ma CM, Hattori M, Chen HB, Cai SQ, Daneshtalab M (2008) Phytochem Anal 19(4):294–300. doi: 10.1002/pca.1045 CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2008

Authors and Affiliations

  • Jun Wang
    • 1
  • Ding-Qiang Lu
    • 1
    • 2
  • Xiu-Quan Ling
    • 1
  • Jia-Li Wang
    • 1
  • Hong-Qun Qiao
    • 1
    • 2
  • Ping-Kai Ouyang
    • 1
  1. 1.College of Life Science and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China
  2. 2.Jiangsu Provincial Institute of Materia MedicaNanjingPeople’s Republic of China

Personalised recommendations