Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1
Article
PubMed
PubMed Central
CAS
Google Scholar
Bals T, Dunschede B, Funke S, Schunemann D (2010) Interplay between the cpSRP pathway components, the substrate LHCP and the translocase Alb3: an in vivo and in vitro study. FEBS Lett 584:4138–4144
Article
PubMed
CAS
Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258
Article
PubMed
PubMed Central
CAS
Google Scholar
De Santis-MacIossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rudiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489
Article
PubMed
CAS
Google Scholar
Dünschede B, Bals T, Funke S, Schünemann D (2011) Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 286:35187–35195
Article
PubMed
PubMed Central
CAS
Google Scholar
Ehrnthaler M, Scharff LB, Fleischmann TT, Hasse C, Ruf S, Bock R (2014) Synthetic lethality in the tobacco plastid ribosome and its rescue at elevated growth temperatures. Plant Cell 26:765–776
Article
PubMed
PubMed Central
CAS
Google Scholar
Ferreiracerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H, Milkereit P (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell 28:446
Article
CAS
Google Scholar
Gong X, Jiang Q, Xu J, Zhang J, Teng S, Lin D, Dong Y (2013) Disruption of the rice plastid ribosomal protein s20 leads to chloroplast developmental defects and seedling lethality. G3 (Bethesda) 3:1769–1777
Article
CAS
Google Scholar
Gothandam KM, Kim ES, Cho H, Chung YY (2005) OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol 58:421–433
Article
PubMed
CAS
Google Scholar
Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048
Article
PubMed
PubMed Central
CAS
Google Scholar
He L, Zhang S, Qiu Z, Zhao J, Nie W, Lin H, Zhu Z, Zeng D, Qian Q, Zhu L (2018) FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. J Integr Plant Biol
Hedtke B, Börner T, Weihe A (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277:809
Article
PubMed
CAS
Google Scholar
Jr SC, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750
Google Scholar
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472
Article
PubMed
CAS
Google Scholar
Kusumi K, Chono Y, Shimada H, Gotoh E, Tsuyama M, Iba K (2010) Chloroplast biogenesis during the early stage of leaf development in rice. Plant Biotechnol 27:85–90
Article
CAS
Google Scholar
Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050
Article
PubMed
CAS
Google Scholar
Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y (2015) Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol (Stuttg) 17:599–607
Article
CAS
Google Scholar
Lindström MS, Nistér M (2010) Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One 5:e9578
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindström MS, Zhang Y (2008) Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem 283:15568
Article
PubMed
PubMed Central
CAS
Google Scholar
Lung SC, Chuong SD (2012) A transit peptide-like sorting signal at the C terminus directs the Bienertia sinuspersici preprotein receptor Toc159 to the chloroplast outer membrane. Plant Cell 24:1560–1578
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma Z, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37:92–103
Article
PubMed
CAS
Google Scholar
Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313
Article
PubMed
PubMed Central
CAS
Google Scholar
Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics (Oxford, England) 31:1120–1123
Article
CAS
Google Scholar
Pnueli L, Arava Y (2007) Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9. BMC Genomics 8:285
Article
PubMed
PubMed Central
CAS
Google Scholar
Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551
Article
PubMed
PubMed Central
CAS
Google Scholar
Qian Q, Guo L, Smith SM, Li J (2016) Breeding high-yield superior quality hybrid super rice by rational design. Nat Sci Rev 3:283–294
Article
Google Scholar
Qiu Z, Kang S, He L, Zhao J, Zhang S, Hu J, Zeng D, Zhang G, Dong G, Gao Z, Ren D, Chen G, Guo L, Qian Q, Zhu L (2017) The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Sci
Ren D, Yu H, Rao Y, Xu Q, Zhou T, Hu J, Zhang Y, Zhang G, Zhu L, Gao Z (2017) “Two-florets spikelet” as a novel resource has the potential to increase rice yield. Plant Biotechnol J
Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545
Article
PubMed
PubMed Central
CAS
Google Scholar
Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237
Article
PubMed
PubMed Central
CAS
Google Scholar
Romani I, Tadini L, Rossi F, Masiero S, Pribil M, Jahns P, Kater M, Leister D, Pesaresi P (2012) Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. Plant J 72:922–934
Article
PubMed
CAS
Google Scholar
Sakamoto W, Uno Y, Quan Z, Miura E, Kato Y, Sodmergen, Hayashi M, Nishimura M (2009) Arrested differentiation of proplastids into chloroplasts in variegated leaves characterized by plastid ultrastructure and nucleoid morphology. Plant Cell Physiol 50:2069–2083
Article
PubMed
CAS
Google Scholar
Schultes NP, Sawers RJH, Brutnell TP, Krueger RW (2000) Maize high chlorophyll fluorescent 60 mutation is caused by an ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J 21:317–327
Article
PubMed
CAS
Google Scholar
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1
Article
PubMed
CAS
Google Scholar
Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S, Hu P (2014) The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol 84:301–314
Article
PubMed
CAS
Google Scholar
Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP (2012) Disruption of a Rice Pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid Rice production. Plant Physiol 159:227–238
Article
PubMed
PubMed Central
CAS
Google Scholar
Subramanian AR (1985) The ribosome: its evolutionary diversity and the functional role of one of its components. Essays Biochem 21:45–85
PubMed
CAS
Google Scholar
Sun J, Zheng T, Yu J, Wu T, Wang X, Chen G, Tian Y, Zhang H, Wang Y, Terzaghi W (2017) TSV, a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytol 215:240–255
Article
PubMed
CAS
Google Scholar
Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120
Article
PubMed
PubMed Central
CAS
Google Scholar
Urbischek M, Braun SNV, Brylok T, Gügel IL, Richter A, Koskela M, Grimm B, Mulo P, Bölter B, Soll J (2015) The extreme Albino3 (Alb3) C terminus is required for Alb3 stability and function in Arabidopsis thaliana. Planta 242:733–746
Article
PubMed
CAS
Google Scholar
Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ (2017a) The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Sci 259:1–11
Article
PubMed
CAS
Google Scholar
Wang ZW, Lv J, Xie SZ, Zhang Y, Qiu ZN, Chen P, Cui YT, Niu YF, Hu SK, Jiang HZ (2017b) OsSLA4 encodes a pentatricopeptide repeat protein essential for early chloroplast development and seedling growth in rice. Plant Growth Regul:1–12
Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as Total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313
Article
CAS
Google Scholar
Wen L, Lü G, Lu S, Gao H, Chen B, Ma Y, Yuan Y, Zhang H, Xiao Y, Liu H (2017) Molecular cloning and characterization of ribosomal protein S9 in echinococcus granulosus. J Parasitol 103(6):699–707
Article
PubMed
CAS
Google Scholar
Yamaguchi K, Beligni MV, Prieto S, Haynes PA, Mcdonald WH, Mayfield SP (2003) Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to th e70 S ribosome. J Biol Chem 278:33774–33785
Article
PubMed
CAS
Google Scholar
Yamaguchi K, Subramanian AR (2003) Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit - PSRP-2 (U1A-type domains), PSRP-3 alpha/beta (ycf65 homologue) and PSRP-4 (thx homologue). Eur J Biochem 270:190–205
Article
PubMed
CAS
Google Scholar
Yu C, Wang L, Chen C, He C, Hu J, Zhu Y, Huang W (2014) Protoplast: a more efficient system to study nucleo-cytoplasmic interactions. Biochem Biophys Res Commun 450:1575–1580
Article
PubMed
CAS
Google Scholar
Zhang J, Yuan H, Yang Y, Fish T, Lyi SM, Thannhauser TW, Zhang L, Li L (2016) Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. J Exp Bot 67:2731–2744
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ (2016) A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. Plant Mol Biol 91:161–177
Article
PubMed
CAS
Google Scholar
Zhao YY, Xu T, Zucchi P, Bogorad L (1999) Subpopulations of chloroplast ribosomes change during photoregulated development of Zea mays leaves: ribosomal proteins L2, L21, and L29. Proc Natl Acad Sci U S A 96:8997–9002
Article
PubMed
PubMed Central
CAS
Google Scholar