BMC Neuroscience

, 11:P20 | Cite as

Amplification of asynchronous inhibition-mediated synchronization by feedback in recurrent networks

Open Access
Poster Presentation
  • 808 Downloads

Keywords

Granule Cell Olfactory Bulb GABAergic Interneuron Inhibitory Input Cortical Network 

Theoretical studies of synchronized oscillatory acitivity in the cortex have proposed that principal neuron synchrony can be mediated by short-latency, rapidly-decaying inhibition. However, in the olfactory bulb, the inhibitory granule cells produce long lasting, small amplitude, asynchronous and aperiodic inhibitory input and thus the narrow time window that is required to synchronize spiking does not exist. Instead, it has been suggested that correlated output of the granule cells could synchronize uncoupled mitral cells through stochastic synchronization (SS) [1]. Almost all work on SS presumes that the correlation is imposed and fixed. Building on theory that we and others have developed [1, 2], we show that increased synchrony in the mitral cells could produce an increase in granule cell activity for those granule cells that share a synchronous group of mitral cells. Common granule cell input increases the input correlation to the mitral cells and hence their synchrony by providing a positive feedback loop in correlation. Thus we demonstrate the emergence and temporal evolution of input correlation in recurrent networks with feedback. We explore several theoretical models of this idea, ranging from spiking models to an analytically tractable model. The results obtained are used to motivate the investigation of activity in recurrently connected cortical networks containing excitatory pyramidal, inhibitory fast spiking and asynchronously releasing cholecystokinin-releasing GABAergic interneurons.

References

  1. 1.
    Galan RF, Fourcaud-Trocme N, Ermentrout GB, Urban NN: Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci. 2006, 26: 3646-3655. 10.1523/JNEUROSCI.4605-05.2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Marella S, Ermentrout GB: Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. Phys Rev E Stat Nonlin Soft Matter Phys. 2008, 77: 041918.CrossRefPubMedGoogle Scholar

Copyright information

© Marella and Ermentrout; licensee BioMed Central Ltd. 2010

This article is published under license to BioMed Central Ltd.

Authors and Affiliations

  1. 1.Center for NeuroscienceUniversity of PittsburghPittsburghUSA
  2. 2.Center for Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations