Skip to main content
Log in

Eight-dimensional non-geometric heterotic strings and enhanced gauge groups

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Some constructions in string theory are linked to noncommutative geometry. Non-geometric strings are among such constructions. Non-geometric strings are related to a noncommutative torus. In this article, we discuss some aspects of non-geometric heterotic strings. We review the construction of eight-dimensional (8D) non-geometric heterotic strings, proposed by Malmendier and Morrison, which do not allow for a geometric interpretation. In the construction, the \(\mathfrak {e}_8\oplus \mathfrak {e}_7\) gauge algebra is unbroken. The moduli space of 8D non-geometric heterotic strings and theories arising in the moduli space can be analyzed by studying the geometries of elliptically fibered K3 surfaces with a global section by applying F-theory/heterotic duality. In addition, we review the results of the points in the 8D non-geometric heterotic moduli with the unbroken \(\mathfrak {e}_8\oplus \mathfrak {e}_7\) gauge algebra, at which the non-Abelian gauge groups are maximally enhanced. At these points, the gauge groups formed in the theories do not allow for a perturbative interpretation of the heterotic perspective. However, from the dual F-theory perspective, the K3 geometries at these points are deformations of the stable degenerations that arise from the coincident 7-branes. On the heterotic side, these enhancements can be understood as a non-perturbative effect of 5-brane insertions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

Notes

  1. Discussion of connections \(O^+(\Lambda ^{2,2})\)-modular forms and non-geometric heterotic strings can be found in [28]. Non-geometric type II theories were studied in [5, 10].

  2. An elliptic K3 surface degenerates into two 1/2 K3 surfaces intersecting along an elliptic curve in the stable degeneration limit. The duality relation of heterotic strings and F-theory becomes rigorous when the stable degeneration limit is considered on the F-theory side.

References

  1. P. Bouwknegt, K. Hannabuss, V. Mathai, Nonassociative tori and applications to T-duality. Commun. Math. Phys. 264, 41–69 (2006). arXiv:hep-th/0412092 [hep-th]

    MathSciNet  ADS  Google Scholar 

  2. E. Alvarez, L. Alvarez-Gaume, J.L.F. Barbon, Y. Lozano, Some global aspects of duality in string theory. Nucl. Phys. B 415, 71–100 (1994). arXiv:hep-th/9309039 [hep-th]

    MathSciNet  ADS  Google Scholar 

  3. S. Gurrieri, J. Louis, A. Micu, D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications. Nucl. Phys. B 654, 61–113 (2003). arXiv:hep-th/0211102 [hep-th]

    MathSciNet  ADS  Google Scholar 

  4. S. Kachru, M.B. Schulz, P.K. Tripathy, S.P. Trivedi, New supersymmetric string compactifications. JHEP 03, 061 (2003). arXiv:hep-th/0211182 [hep-th]

    MathSciNet  ADS  Google Scholar 

  5. S. Hellerman, J. McGreevy, B. Williams, Geometric constructions of nongeometric string theories. JHEP 01, 024 (2004). arXiv:hep-th/0208174

    MathSciNet  ADS  Google Scholar 

  6. S. Fidanza, R. Minasian, A. Tomasiello, Mirror symmetric SU(3) structure manifolds with NS fluxes. Commun. Math. Phys. 254, 401–423 (2005). arXiv:hep-th/0311122 [hep-th]

    MathSciNet  ADS  Google Scholar 

  7. P. Bouwknegt, J. Evslin, V. Mathai, T duality: topology change from H flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062 [hep-th]

    MathSciNet  ADS  Google Scholar 

  8. V. Mathai, J. M. Rosenberg, ‘On mysteriously missing T-duals, H-flux and the T-duality group. In: 23rd International Conference of Differential Geometric Methods in Theoretical Physics, pp. 350–358 arXiv:hep-th/0409073 [hep-th]

  9. V. Mathai, J.M. Rosenberg, T duality for torus bundles with H fluxes via noncommutative topology. Commun. Math. Phys. 253, 705–721 (2004). arXiv:hep-th/0401168 [hep-th]

    MathSciNet  ADS  Google Scholar 

  10. E. Plauschinn, Non-geometric backgrounds in string theory. Phys. Rept. 798, 1–122 (2019). arXiv:1811.11203 [hep-th]

    MathSciNet  ADS  Google Scholar 

  11. A. Giveon, M. Porrati, E. Rabinovici, Target space duality in string theory. Phys. Rept. 244, 77–202 (1994). arXiv:hep-th/9401139 [hep-th]

    MathSciNet  ADS  Google Scholar 

  12. C.M. Hull, A geometry for non-geometric string backgrounds. JHEP 10, 065 (2005). arXiv:hep-th/0406102 [hep-th]

    MathSciNet  ADS  Google Scholar 

  13. P. Grange, S. Schäfer-Nameki, T-duality with H-flux: non-commutativity, T-folds and G x G structure. Nucl. Phys. B 770, 123–144 (2007). arXiv:hep-th/0609084 [hep-th]

    MathSciNet  ADS  Google Scholar 

  14. A. Connes, M.R. Douglas, A.S. Schwarz, Noncommutative geometry and matrix theory: compactification on tori. JHEP 02, 003 (1998). arXiv:hep-th/9711162 [hep-th]

    MathSciNet  ADS  Google Scholar 

  15. N. Seiberg, E. Witten, String theory and noncommutative geometry. JHEP 09, 032 (1999). arXiv:hep-th/9908142 [hep-th]

    MathSciNet  ADS  Google Scholar 

  16. D.J. Gross, J.A. Harvey, E.J. Martinec, R. Rohm, The heterotic string. Phys. Rev. Lett. 54, 502–505 (1985)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  17. D.J. Gross, J.A. Harvey, E.J. Martinec, R. Rohm, Heterotic string theory. 1. The free heterotic string. Nucl. Phys. B 256, 253 (1985)

    MathSciNet  ADS  Google Scholar 

  18. D.J. Gross, J.A. Harvey, E.J. Martinec, R. Rohm, Heterotic string theory. 2. The interacting heterotic string. Nucl. Phys. B 267, 75–124 (1986)

    MathSciNet  ADS  Google Scholar 

  19. C. Vafa, Evidence for F-theory. Nucl. Phys. B 469, 403 (1996). arXiv:hep-th/9602022

    MathSciNet  ADS  Google Scholar 

  20. D.R. Morrison, C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1. Nucl. Phys. B 473, 74 (1996). arXiv:hep-th/9602114

    MathSciNet  ADS  Google Scholar 

  21. D.R. Morrison, C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2. Nucl. Phys. B 476, 437 (1996). arXiv:hep-th/9603161

    MathSciNet  ADS  Google Scholar 

  22. K. Kodaira, On compact analytic surfaces II. Ann. Math. 77, 563–626 (1963)

    MathSciNet  Google Scholar 

  23. K. Kodaira, On compact analytic surfaces III. Ann. Math. 78, 1–40 (1963)

    MathSciNet  Google Scholar 

  24. M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov, C. Vafa, Geometric singularities and enhanced gauge symmetries. Nucl. Phys. B 481, 215 (1996). arXiv:hep-th/9605200

    MathSciNet  ADS  Google Scholar 

  25. A. Sen, F theory and orientifolds. Nucl. Phys. B 475, 562–578 (1996). arXiv:hep-th/9605150

    MathSciNet  ADS  Google Scholar 

  26. R. Friedman, J. Morgan, E. Witten, Vector bundles and F theory. Commun. Math. Phys. 187, 679–743 (1997). arXiv:hep-th/9701162

    ADS  Google Scholar 

  27. A. Malmendier, D.R. Morrison, K3 surfaces, modular forms, and non-geometric heterotic compactifications. Lett. Math. Phys. 105(8), 1085–1118 (2015). arXiv:1406.4873 [hep-th]

    MathSciNet  ADS  Google Scholar 

  28. J. McOrist, D.R. Morrison, S. Sethi, Geometries, non-geometries, and fluxes. Adv. Theor. Math. Phys. 14(5), 1515–1583 (2010). arXiv:1004.5447 [hep-th]

    MathSciNet  Google Scholar 

  29. Y. Kimura, Nongeometric heterotic strings and dual F-theory with enhanced gauge groups. JHEP 02, 036 (2019). arXiv:1810.07657 [hep-th]

    MathSciNet  ADS  Google Scholar 

  30. P.S. Aspinwall, D.R. Morrison, Point-like instantons on K3 orbifolds. Nucl. Phys. B 503, 533–564 (1997). arXiv:hep-th/9705104

    MathSciNet  ADS  Google Scholar 

  31. D. Lüst, S. Massai, V. Vall Camell, The monodromy of T-folds and T-fects. JHEP 09, 127 (2016). arXiv:1508.01193 [hep-th]

    MathSciNet  ADS  Google Scholar 

  32. A. Font, I. García-Etxebarria, D. Lust, S. Massai, C. Mayrhofer, Heterotic T-fects, 6D SCFTs, and F-theory. JHEP 08, 175 (2016). arXiv:1603.09361 [hep-th]

    MathSciNet  ADS  Google Scholar 

  33. A. Malmendier, T. Shaska, The Satake sextic in F-theory. J. Geom. Phys. 120, 290–305 (2017). arXiv:1609.04341 [math.AG]

    MathSciNet  ADS  Google Scholar 

  34. I. García-Etxebarria, D. Lust, S. Massai, C. Mayrhofer, Ubiquity of non-geometry in heterotic compactifications. JHEP 03, 046 (2017). arXiv:1611.10291 [hep-th]

    MathSciNet  ADS  Google Scholar 

  35. A. Font, C. Mayrhofer, Non-geometric vacua of the \({\text{ Spin } {(32)}/{\mathbb{Z} }_2}\) heterotic string and little string theories. JHEP 11, 064 (2017). arXiv:1708.05428 [hep-th]

    ADS  Google Scholar 

  36. A. Clingher, A. Malmendier, T. Shaska, Six line configurations and string dualities. Commun. Math. Phys. 371(1), 159–196 (2019). arXiv:1806.07460 [math.AG]

    MathSciNet  ADS  Google Scholar 

  37. Y. Kimura, Unbroken \(E_7\times E_7\) nongeometric heterotic strings, stable degenerations and enhanced gauge groups in F-theory duals. Adv. Theor. Math. Phys. 25(5), 1267–1323 (2021). arXiv:1902.00944 [hep-th]

  38. A. Clingher, T. Hill, A. Malmendier, The duality between F-theory and the heterotic string in \(D=8\) with two Wilson lines. Lett. Math. Phys. 110, 3081–3104 (2020). arXiv:2205.08100 [math.AG]

    MathSciNet  ADS  Google Scholar 

  39. A. Clingher, A. Malmendier, On K3 surfaces of Picard rank 14. arXiv:2009.09635 [math.AG]

  40. A. Clingher, A. Malmendier, On the duality of F-theory and the CHL string in seven dimensions. arXiv:2111.15125 [math.AG]

  41. A. Bedroya, Y. Hamada, M. Montero, C. Vafa, Compactness of brane moduli and the String Lamppost Principle in d \(>\) 6. JHEP 02, 082 (2022). arXiv:2110.10157 [hep-th]

    MathSciNet  ADS  Google Scholar 

  42. T. Shioda, On elliptic modular surfaces. J. Math. Soc. Jpn. 24, 20–59 (1972)

    MathSciNet  ADS  Google Scholar 

  43. J. Tate, Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), ed. by O.F.G. Schilling (Harper & Row, 1965), pp. 93–110

  44. J. Tate, ‘On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki 9, Exposé(306), 415–440, (1964–1966)

  45. Y. Kimura, F-theory models on K3 surfaces with various Mordell-Weil ranks -constructions that use quadratic base change of rational elliptic surfaces. JHEP 05, 048 (2018). arXiv:1802.05195 [hep-th]

    MathSciNet  ADS  Google Scholar 

  46. P.S. Aspinwall, M. Gross, The SO(32) heterotic string on a K3 surface. Phys. Lett. B 387, 735–742 (1996). arXiv:hep-th/9605131

    MathSciNet  CAS  ADS  Google Scholar 

  47. P.S. Aspinwall, D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves. JHEP 9807, 012 (1998). arXiv:hep-th/9805206

    ADS  Google Scholar 

  48. C. Mayrhofer, D.R. Morrison, O. Till, T. Weigand, Mordell-Weil Torsion and the global structure of gauge groups in F-theory. JHEP 10, 16 (2014). arXiv:1405.3656 [hep-th]

    MathSciNet  ADS  Google Scholar 

  49. Y. Kimura, Gauge symmetries and matter fields in F-theory models without section- compactifications on double cover and Fermat quartic K3 constructions times K3. Adv. Theor. Math. Phys. 21(8), 2087–2114 (2017). arXiv:1603.03212 [hep-th]

    MathSciNet  Google Scholar 

  50. Y. Kimura, Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section. JHEP 04, 168 (2017). arXiv:1608.07219 [hep-th]

    MathSciNet  ADS  Google Scholar 

  51. D.R. Morrison, W. Taylor, Charge completeness and the massless charge lattice in F-theory models of supergravity. JHEP 12, 040 (2021). arXiv:2108.02309 [hep-th]

    MathSciNet  ADS  Google Scholar 

  52. Y. Kimura, Jacobian Calabi-Yau 3-fold and charge completeness in six-dimensional theory. arXiv:2203.06661 [hep-th]

  53. Y. Kimura, S. Mizoguchi, Enhancements in F-theory models on moduli spaces of K3 surfaces with \(ADE\) rank 17. PTEP 2018(4), 043B05 (2018). arXiv:1712.08539 [hep-th]

    MathSciNet  Google Scholar 

  54. Y. Kimura, Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces. JHEP 03, 045 (2018). arXiv:1710.04984 [hep-th]

    MathSciNet  ADS  Google Scholar 

  55. Y. Kimura, New perspectives in the duality of M-theory, heterotic strings, and F-theory. arXiv:2103.03088 [hep-th]

  56. K.S. Narain, New heterotic string theories in uncompactified dimensions<10. Phys. Lett. 169B, 41–46 (1986)

    MathSciNet  CAS  ADS  Google Scholar 

  57. K.S. Narain, M.H. Sarmadi, E. Witten, A note on toroidal compactification of heterotic string theory. Nucl. Phys. B 279, 369–379 (1987)

    MathSciNet  ADS  Google Scholar 

  58. E.B. Vinberg, On the algebra of Siegel modular forms of genus 2. Trans. Moscow Math. Soc. 74, 1–13 (2013)

    MathSciNet  Google Scholar 

  59. J. Igusa, On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)

    MathSciNet  Google Scholar 

  60. A. Kumar, K3 Surfaces associated with curves of genus two. Int. Math. Res. Not. 2008, rnm165 (2008)

    MathSciNet  Google Scholar 

  61. A. Clingher, C.F. Doran, Note on a Geometric Isogeny of K3 Surfaces. Int. Math. Res. Not. 2011, 3657–3687 (2011)

    MathSciNet  Google Scholar 

  62. A. Clingher, C.F. Doran, Lattice polarized K3 surfaces and Siegel modular forms. Adv. Math. 231, 172–212 (2012)

    MathSciNet  Google Scholar 

  63. I.I. Piatetski-Shapiro, I.R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)

    MathSciNet  Google Scholar 

  64. T. Shioda, H. Inose, On singular K3 surfaces, in Complex Analysis and Algebraic Geometry. ed. by W.L. Baily Jr.., T. Shioda (Iwanami Shoten, Tokyo, 1977), pp.119–136

    Google Scholar 

  65. I. Shimada, D.-Q. Zhang, Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. Nagoya Math. J. 161, 23–54 (2001). arXiv:math/0007171

    MathSciNet  Google Scholar 

  66. R. Miranda, U. Persson, On extremal rational elliptic surfaces. Math. Z. 193, 537–558 (1986)

    MathSciNet  Google Scholar 

  67. J. Milnor, On simply connected 4-manifolds. In: Symposium Internacional de Topologia Algebraica (International Symposium on Algebraic Topology), Mexico City, pp. 122–128 (1958)

  68. I. Shimada, On elliptic K3 surfaces. Mich. Math. J. 47, 423–446 (2000). arXiv:math/0505140 [math.AG]

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Shigeru Mukai for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kimura.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y. Eight-dimensional non-geometric heterotic strings and enhanced gauge groups. Eur. Phys. J. Spec. Top. 232, 3697–3704 (2023). https://doi.org/10.1140/epjs/s11734-023-00889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00889-3

Navigation