Skip to main content
Log in

Instances of higher geometry in field theory

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Generalisations of geometry have emerged in various forms in the study of field theory and quantization. This mini-review focuses on the role of higher geometry in three selected physical applications. After motivating and describing some basic aspects of algebroid structures on bundles and (differential graded) Q-manifolds, we briefly discuss their relation to \((\alpha )\) the Batalin–Vilkovisky quantization of topological sigma models, \((\beta )\) higher gauge theories and generalized global symmetries and \((\gamma )\) tensor gauge theories, where the universality of their form and properties in terms of graded geometry is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data required to reproduce the results are included in the paper.

Notes

  1. In this mini-review, the word “higher” is preferred. One reason is that it is sometimes used here as an umbrella term for a variety of different—but often closely related—ideas, including generalised complex geometry, differential geometry of homotopy algebras or algebroids, graded supergeometry and noncommutative geometry, although focus will be on a small subset due to length restrictions.

  2. It is useful to recall that all gauge field theories are constrained Hamiltonian systems.

  3. Other versions corresponding to the same notion exist, for example based on Leibniz-type brackets (a.k.a. Dorfman bracket) [7, 8] or foliations [9].

  4. This and some relaxed structures thereof were used in [26] for membrane sigma models.

  5. We note that E-covariant derivatives on a different vector bundle V can also be defined.

  6. We mainly refer here to ’t Hooft anomalies, which can obstruct the gauging of a symmetry, see e.g. [57] for a recent review. The same reasoning also applies of course to ABJ anomalies.

  7. One should not take this as having literally any relation to the matching of scattering amplitudes between gravity and Yang–Mills.

  8. It is amusing to note that the more symmetric slots one adds to a tensor, the more antisymmetric coordinates are introduced to describe them in terms of Q-manifolds. I thank Peter Schupp for emphasizing this.

  9. This means that Lagrangians whose nonlinearity is due to being an algebraic functional of the free kinetic and theta terms are included, but Yang–Mills type theories or full general relativity have not been fully described in this form yet.

References

  1. T.J. Courant, Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  Google Scholar 

  2. Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997). arXiv:dg-ga/9508013

    Article  MathSciNet  Google Scholar 

  3. N. Hitchin, Generalized Calabi–Yau manifolds. Q. J. Math. 54, 281–308 (2003). https://doi.org/10.1093/qjmath/54.3.281. arXiv:math/0209099

    Article  MathSciNet  Google Scholar 

  4. M. Gualtieri, Generalized complex geometry. PhD thesis, Oxford U. (2003)

  5. J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différenetiel dans la catégorie des groupoïdes infinitésimaux. C. R. Acad. Sci. Paris Sér. A-B 264, 245–248 (1967)

  6. B. Jurco, P. Schupp, J. Vysoky, On the generalized geometry origin of noncommutative gauge theory. JHEP 07, 126 (2013). https://doi.org/10.1007/JHEP07(2013)126. arXiv:1303.6096 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley (1999)

  8. P. Ševera, Letters to Alan Weinstein about Courant algebroids (2017). arXiv:1707.00265 [math.DG]

  9. Z. Chen, M. Stiénon, P. Xu, On regular courant algebroids. J. Symplectic Geom. 11(1), 1–24 (2013). https://doi.org/10.4310/jsg.2013.v11.n1.a1

    Article  MathSciNet  Google Scholar 

  10. E. Plauschinn, Non-geometric backgrounds in string theory. Phys. Rep. 798, 1–122 (2019). https://doi.org/10.1016/j.physrep.2018.12.002. arXiv:1811.11203 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Aldazabal, D. Marques, C. Nunez, Double field theory: a pedagogical review. Class. Quantum Gravity 30, 163001 (2013). https://doi.org/10.1088/0264-9381/30/16/163001. arXiv:1305.1907 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. O. Hohm, D. Lüst, B. Zwiebach, The spacetime of double field theory: review, remarks, and outlook. Fortschr. Phys. 61, 926–966 (2013). https://doi.org/10.1002/prop.201300024. arXiv:1309.2977 [hep-th]

    Article  MathSciNet  Google Scholar 

  13. D.S. Berman, D.C. Thompson, Duality symmetric string and M-theory. Phys. Rep. 566, 1–60 (2014). https://doi.org/10.1016/j.physrep.2014.11.007. arXiv:1306.2643 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Qiu, M. Zabzine, Introduction to graded geometry, Batalin–Vilkovisky formalism and their applications. Arch. Math. 47, 143–199 (2011). arXiv:1105.2680 [math.QA]

    MathSciNet  Google Scholar 

  15. A.S. Cattaneo, F. Schätz, Introduction to supergeometry. Rev. Math. Phys. 23(06), 669–690 (2011). https://doi.org/10.1142/s0129055x11004400

    Article  MathSciNet  Google Scholar 

  16. M. Henneaux, C. Teitelboim, Quantization of gauge systems, Princeton University Press (1992). ISBN: 9780691037691

  17. J. Gomis, J. Paris, S. Samuel, Antibracket, antifields and gauge theory quantization. Phys. Rep. 259, 1–145 (1995). https://doi.org/10.1016/0370-1573(94)00112-G. arXiv:hep-th/9412228

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). https://doi.org/10.1016/S0370-1573(00)00049-1. arXiv:hep-th/0002245

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. P. Severa, Some title containing the words “homotopy” and “symplectic”, e.g. this one (2001). arXiv:math/0105080

  20. M. Alexandrov, A. Schwarz, O. Zaboronsky, M. Kontsevich, The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405–1429 (1997). https://doi.org/10.1142/S0217751X97001031. arXiv:hep-th/9502010

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. D. Roytenberg, A. Weinstein, Courant algebroids and strongly homotopy lie algebras (1998). https://doi.org/10.48550/ARXIV.MATH/9802118

  22. C.J. Grewcoe, L. Jonke, Courant sigma model and \(L_\infty\)-algebras. Fortschr. Phys. 68(6), 2000021 (2020). https://doi.org/10.1002/prop.202000021. arXiv:2001.11745 [hep-th]

    Article  MathSciNet  Google Scholar 

  23. N. Ikeda, Lectures on AKSZ sigma models for physicists, in Workshop on Strings, Membranes and Topological Field Theory. WSPC (2017), pp. 79–169. https://doi.org/10.1142/9789813144613_0003

  24. P. Bouwknegt, B. Jurco, AKSZ construction of topological open p-brane action and Nambu brackets. Rev. Math. Phys. 25, 1330004 (2013). https://doi.org/10.1142/S0129055X13300045. arXiv:1110.0134 [math-ph]

    Article  MathSciNet  Google Scholar 

  25. P. Severa, A. Weinstein, Poisson geometry with a 3 form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2001). https://doi.org/10.1143/PTPS.144.145. arXiv:math/0107133

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Chatzistavrakidis, L. Jonke, F.S. Khoo, R.J. Szabo, Double field theory and membrane sigma-models. JHEP 07, 015 (2018). https://doi.org/10.1007/JHEP07(2018)015. arXiv:1802.07003 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Hansen, T. Strobl, First class constrained systems and twisting of courant algebroids by a closed 4-form (2009). https://doi.org/10.1142/9789814277839_0008. arXiv:0904.0711 [hep-th]

  28. A.J. Bruce, J. Grabowski, Pre-courant algebroids. J. Geom. Phys. 142, 254–273 (2019). https://doi.org/10.1016/j.geomphys.2019.04.007

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Vaisman, Transitive Courant algebroids. Int. J. Math. Math. Sci. 2005, 1737–1758 (2005). https://doi.org/10.1155/IJMMS.2005.1737. arXiv:math/0407399

    Article  MathSciNet  Google Scholar 

  30. Z. Liu, Y. Sheng, X. Xu, The Pontryagin class for pre-Courant algebroids. J. Geom. Phys. 104, 148–162 (2016). https://doi.org/10.1016/j.geomphys.2016.02.007

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Chatzistavrakidis, Topological field theories induced by twisted R-Poisson structure in any dimension. JHEP 09, 045 (2021). https://doi.org/10.1007/JHEP09(2021)045. arXiv:2106.01067 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Witten, Topological sigma models. Commun. Math. Phys. 118, 411 (1988). https://doi.org/10.1007/BF01466725

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991). https://doi.org/10.1016/0370-1573(91)90117-5

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. A.S. Schwarz, Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993). https://doi.org/10.1007/BF02097392. arXiv:hep-th/9205088

    Article  ADS  MathSciNet  Google Scholar 

  35. A.S. Schwarz, Semiclassical approximation in Batalin–Vilkovisky formalism. Commun. Math. Phys. 158, 373–396 (1993). https://doi.org/10.1007/BF02108080. arXiv:hep-th/9210115

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Witten, Mirror manifolds and topological field theory. AMS/IP Stud. Adv. Math. 9, 121–160 (1998). arXiv:hep-th/9112056

    Article  Google Scholar 

  37. P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). https://doi.org/10.1142/S0217732394002951. arXiv:hep-th/9405110

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). https://doi.org/10.1006/aphy.1994.1104. arXiv:hep-th/9312059

    Article  ADS  MathSciNet  CAS  Google Scholar 

  39. F. Bonechi, M. Zabzine, Poisson sigma model on the sphere. Commun. Math. Phys. 285, 1033–1063 (2009). https://doi.org/10.1007/s00220-008-0615-1. arXiv:0706.3164 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Bonechi, A.S. Cattaneo, R. Iraso, Comparing Poisson sigma model with A-model. JHEP 10, 133 (2016). https://doi.org/10.1007/JHEP10(2016)133. arXiv:1607.03411 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). https://doi.org/10.1007/s002200000229. arXiv:math/9902090

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Kontsevich, Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys. 66, 157–216 (2003). https://doi.org/10.1023/B:MATH.0000027508.00421.bf. arXiv:q-alg/9709040

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Gukov, E. Witten, Branes and quantization. Adv. Theor. Math. Phys. 13(5), 1445–1518 (2009). https://doi.org/10.4310/ATMP.2009.v13.n5.a5. arXiv:0809.0305 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Kapustin, D. Orlov, Remarks on A branes, mirror symmetry, and the Fukaya category. J. Geom. Phys. 48, 84 (2003). https://doi.org/10.1016/S0393-0440(03)00026-3. arXiv:hep-th/0109098

    Article  ADS  MathSciNet  Google Scholar 

  45. N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). https://doi.org/10.1142/S0217751X03015155. arXiv:hep-th/0203043

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. C. Hofman, J.-S. Park, BV quantization of topological open membranes. Commun. Math. Phys. 249, 249–271 (2004). https://doi.org/10.1007/s00220-004-1106-7. arXiv:hep-th/0209214

    Article  ADS  MathSciNet  Google Scholar 

  47. D. Roytenberg, AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143–159 (2007). https://doi.org/10.1007/s11005-006-0134-y. arXiv:hep-th/0608150

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Klimcik, T. Strobl, WZW–Poisson manifolds. J. Geom. Phys. 43, 341–344 (2002). https://doi.org/10.1016/S0393-0440(02)00027-X. arXiv:math/0104189

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Kotov, P. Schaller, T. Strobl, Dirac sigma models. Commun. Math. Phys. 260, 455–480 (2005). https://doi.org/10.1007/s00220-005-1416-4. arXiv:hep-th/0411112

    Article  ADS  MathSciNet  Google Scholar 

  50. N. Ikeda, T. Strobl, BV and BFV for the H-twisted Poisson sigma model. Ann. Henri Poincare 22(4), 1267–1316 (2021). https://doi.org/10.1007/s00023-020-00988-0. arXiv:1912.13511 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Kotov, T. Strobl, Lie algebroids, gauge theories, and compatible geometrical structures. Rev. Math. Phys. 31(04), 1950015 (2018). https://doi.org/10.1142/S0129055X19500156. arXiv:1603.04490 [math.DG]

    Article  MathSciNet  Google Scholar 

  52. A. Chatzistavrakidis, L. Jonke, T. Strobl, G. Šimunić, Topological Dirac sigma models and the classical master equation. J. Phys. A 56(1), 015402 (2023). https://iopscience.iop.org/article/10.1088/1751-8121/acb09a. arXiv:2206.14258 [hep-th]

  53. A. Chatzistavrakidis, N. Ikeda, G. Šimunić, The BV action of 3D twisted R-Poisson sigma models. JHEP 2022, 2 (2022). https://link.springer.com/article/10.1007/JHEP10(2022)002. arXiv:2206.03683 [hep-th]

  54. J.C. Baez, U. Schreiber, Higher gauge theory. In Categories in Algebra, Geometry and Mathematical Physics, ed. by A. Davydov et al. Contemp. Math. vol 431 (AMS, Providence, Rhode Island, 2007), pp. 7–30. arXiv:math/0511710

  55. J.C. Baez, J. Huerta, An invitation to higher gauge theory. Gen. Relativ. Gravit. 43, 2335–2392 (2011). https://doi.org/10.1007/s10714-010-1070-9. arXiv:1003.4485 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Grützmann, T. Strobl, General Yang–Mills type gauge theories for \(p\)-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids. Int. J. Geom. Methods Mod. Phys. 12, 1550009 (2014). https://doi.org/10.1142/S0219887815500097. arXiv:1407.6759 [hep-th]

    Article  MathSciNet  Google Scholar 

  57. C. Córdova, T.T. Dumitrescu, K. Intriligator, Exploring 2-group global symmetries. JHEP 02, 184 (2019). https://doi.org/10.1007/JHEP02(2019)184. arXiv:1802.04790 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  58. D. Gaiotto, A. Kapustin, N. Seiberg, B. Willett, Generalized global symmetries. JHEP 02, 172 (2015). https://doi.org/10.1007/JHEP02(2015)172. arXiv:1412.5148 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  59. E. Sharpe, Notes on generalized global symmetries in QFT. Fortschr. Phys. 63, 659–682 (2015). https://doi.org/10.1002/prop.201500048. arXiv:1508.04770 [hep-th]

    Article  MathSciNet  Google Scholar 

  60. O. Hohm, B. Zwiebach, \(L_{\infty }\) algebras and field theory. Fortschr. Phys. 65(3–4), 1700014 (2017). https://doi.org/10.1002/prop.201700014. arXiv:1701.08824 [hep-th]

    Article  MathSciNet  Google Scholar 

  61. C.J. Grewcoe, L. Jonke, Double field theory algebroid and curved L\(_\infty\)-algebras. J. Math. Phys. 62(5), 052302 (2021). https://doi.org/10.1063/5.0041479. arXiv:2012.02712 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  62. C.M. Hull, Duality in gravity and higher spin gauge fields. JHEP 09, 027 (2001). https://doi.org/10.1088/1126-6708/2001/09/027. arXiv:hep-th/0107149

    Article  ADS  MathSciNet  Google Scholar 

  63. T. Curtright, Generalized gauge fields. Phys. Lett. B 165, 304–308 (1985). https://doi.org/10.1016/0370-2693(85)91235-3

    Article  ADS  Google Scholar 

  64. M. Pretko, X. Chen, Y. You, Fracton phases of matter. Int. J. Mod. Phys. A 35(06), 2030003 (2020). https://doi.org/10.1142/S0217751X20300033. arXiv:2001.01722 [cond-mat.str-el]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  65. A. Chatzistavrakidis, G. Karagiannis, P. Schupp, A unified approach to standard and exotic dualizations through graded geometry. Commun. Math. Phys. 378(2), 1157–1201 (2020). https://doi.org/10.1007/s00220-020-03728-x. arXiv:1908.11663 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  66. A. Chatzistavrakidis, G. Karagiannis, A. Ranjbar, Duality and higher Buscher rules in p-form gauge theory and linearized gravity. Fortschr. Phys. 69(3), 2000135 (2021). https://doi.org/10.1002/prop.202000135. arXiv:2012.08220 [hep-th]

    Article  MathSciNet  Google Scholar 

  67. A. Chatzistavrakidis, G. Karagiannis, A. Ranjbar, Duality, generalized global symmetries and jet space isometries. Universe 8(1), 10 (2021). https://doi.org/10.3390/universe8010010. arXiv:2112.00441 [hep-th]

    Article  ADS  Google Scholar 

  68. A. Chatzistavrakidis, F.S. Khoo, D. Roest, P. Schupp, Tensor galileons and gravity. JHEP 03, 070 (2017). https://doi.org/10.1007/JHEP03(2017)070. arXiv:1612.05991 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Work supported by the Croatian Science Foundation Project “New Geometries for Gravity and Spacetime” (IP-2018-01-7615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Chatzistavrakidis.

Additional information

S.I.: Noncommutativity and Physics. Guest editors: George Zoupanos, Konstantinos Anagnostopoulos, Peter Schupp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A. Instances of higher geometry in field theory. Eur. Phys. J. Spec. Top. 232, 3705–3713 (2023). https://doi.org/10.1140/epjs/s11734-023-00839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00839-z

Navigation