Skip to main content
Log in

A road to fuzzy physics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper is intended to develop intuition about noncommutative spaces in general, in particular to explain notions of continuity, differential calculus and geometry applied to noncommutative algebras. To this end we discuss the simplest and the most prominent examples of fuzzy spaces. A specific variant of noncommutative differential geometry, the noncommutative frame formalism, is introduced in the same elementary way, through examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We place \(m=1\) and \(\omega =1\) which leaves only \(\hbar\) as a dimensionful quantity. In fact, one often suppresses \(\hbar\) as well to simplify normalization.

  2. In the following, a pair of the corresponding commutative and noncommutative quantities is denoted by the same letter with and without a tilde, e.g. \({\tilde{x}}\) and \(x\,\).

  3. The letter \(k\!\!\!^{-}\) is chosen to denote the constant of noncommutativity by analogy with \(\hbar\); its dimension is length squared. If we assume that noncommutative geometry is an exact aspect of quantum gravity, it is reasonable to relate \(k\!\!\!^{-}\) to the Planck length, \(\,k\!\!\!^{-}\sim \ell _{Pl}^2\,\); if noncommutativity is only effective then \(\,k\!\!\!^{-}>\ell _{Pl}^2\,\) or  \(k\!\!\!^{-}\gg \ell _{Pl}^2\).

  4. We give just an outline of the reasoning; proofs can be found in [1].

References

  1. J. Madore, An introduction to noncommutative differential geometry and its physical applications, in London Mathematical Society Lecture Note series, vol. 257, (CUP, 2000)

    Google Scholar 

  2. M. Nakahara, Geometry, Topology and Physics (IoP, 2003)

    Google Scholar 

  3. J. Madore, Class. Quantum Gravity 9, 69 (1992)

    Article  ADS  Google Scholar 

  4. A. Perelomov, Generalized Coherent States and Their Applications (Springer, 1986)

    Book  Google Scholar 

  5. H. Grosse, R. Wulkenhaar, JHEP 12, 019 (2003)

    Article  ADS  Google Scholar 

  6. M. Buric, M. Wohlgenannt, JHEP 03, 053 (2010)

    Article  ADS  Google Scholar 

  7. M. Buric, J. Madore, Eur. Phys. J. C 75, 502 (2015)

    Article  ADS  Google Scholar 

  8. M. Buric, D. Latas, L. Nenadovic, Eur. Phys. J. C 78, 953 (2018)

    Article  ADS  Google Scholar 

  9. A.P. Balachandran, S. Kurkcuoglu, S. Vaidya, Lectures on Fuzzy and Fuzzy SUSY Physics (World Scientific, 2007)

    Book  Google Scholar 

  10. B.P. Dolan, D. O’Connor, P. Presnajder, JHEP 03, 013 (2002)

    Article  ADS  Google Scholar 

  11. H. Grosse, J. Madore, Phys. Lett. B 283, 218 (1992)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  12. U. Carow-Watamura, S. Watamura, Commun. Math. Phys. 183, 365 (1997)

    Article  ADS  Google Scholar 

  13. H. Grosse, J. Madore, H. Steinacker, J. Geom. Phys. 38, 308 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  14. R.J. Szabo, Phys. Rep. 378, 207 (2003)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  15. C.S. Chu, J. Madore, H. Steinacker, JHEP 08, 038 (2001)

    Article  ADS  Google Scholar 

  16. A. Connes, J. Lott, Nucl. Phys. B 18, 29 (1991)

    Article  Google Scholar 

  17. P. Aschieri, J. Madore, P. Manousselis, G. Zoupanos, JHEP 04, 034 (2004)

    Article  ADS  Google Scholar 

  18. M. Buric, T. Grammatikopoulos, J. Madore, G. Zoupanos, JHEP 04, 054 (2006)

    Article  ADS  Google Scholar 

  19. M. Buric, J. Madore, G. Zoupanos, Eur. Phys. J. C 55, 489 (2008)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by MPNTR Serbia grant 451-03-68/2022-14/200162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Burić.

Additional information

Noncommutativity and Physics. Guest editors: George Zoupanos, Konstantinos Anagnostopoulos, and Peter Schupp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burić, M. A road to fuzzy physics. Eur. Phys. J. Spec. Top. 232, 3597–3606 (2023). https://doi.org/10.1140/epjs/s11734-023-00838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00838-0

Navigation