Skip to main content
Log in

Revisiting NCQED and scattering amplitudes

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Research progress on the noncommutative gauge theories on the Moyal space is discussed in this minireview. We first present a brief overview on the development of gauge theories on Moyal space, with an emphasis on the role of Seiberg–Witten maps. Two important relations induced by reversible Seiberg–Witten maps, namely the formal equivalence of the on-shell DeWitt background field effective action in general and the explicit identical relation between tree-level scattering amplitudes in noncommutative quantum electrodynamics (NCQED), are described in some detail. We then proceed to the properties of the tree-level two-by-two scattering amplitudes in NCQED, including a forward scattering singularity in NCQED Compton scattering. After covering some phenomenological perspectives of noncommutative Yang–Mills (NCYM)-based models, outlooks for the future are given at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The \(\star\)-product has also an alternative integral formulation, making its nonlocal character more transparent.

  2. We are particularly grateful to Peter Schupp for comments on the connection between SW maps and the Morita equivalence among star products and on the Kontsevich formality approach (see the next subsection).

  3. Note that UV/IR mixing is also connected to holography in a model-independent way [62] and nicely implemented into the idea of the scalar-field weak gravity conjecture, where it manifests as a form of hierarchical UV/IR mixing [63].

  4. We speculate that the answer to this question may be within/connected to the regularization of IR divergences in NCQED at loop levels, which is still unknown at this moment.

References

  1. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315

    ADS  CAS  Google Scholar 

  2. G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763 (1998). arXiv:astro-ph/9712103

    ADS  CAS  Google Scholar 

  3. H.S. Snyder, Quantized space-time. Phys. Rev. 71, 38 (1947). https://doi.org/10.1103/PhysRev.71.38

    Article  ADS  MathSciNet  Google Scholar 

  4. H.S. Snyder, The electromagnetic field in quantized space-time. Phys. Rev. 72, 68 (1947). https://doi.org/10.1103/PhysRev.72.68

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Seiberg, E. Witten, String theory and noncommutative geometry. JHEP 09, 032 (1999)

    ADS  MathSciNet  Google Scholar 

  6. M. Kontsevich, Deformation quantization of Poisson manifolds. 1. Lett. Math. Phys. 66, 157 (2003). https://doi.org/10.1023/B:MATH.0000027508.00421.bf. arXiv:q-alg/9709040

  7. J. Madore, S. Schraml, P. Schupp, J. Wess, Gauge theory on noncommutative spaces. Eur. Phys. J. C 16, 161 (2000). https://doi.org/10.1007/s100520050012. arXiv:hep-th/0001203

  8. B. Jurco, P. Schupp, Noncommutative Yang–Mills from equivalence of star products. Eur. Phys. J. C 14, 367 (2000). https://doi.org/10.1007/s100520000380. arXiv:hep-th/0001032

  9. B. Jurco, L. Moller, S. Schraml, P. Schupp, J. Wess, Construction of nonAbelian gauge theories on noncommutative spaces. Eur. Phys. J. C 21, 383 (2001). https://doi.org/10.1007/s100520100731. arXiv:hep-th/0104153

  10. B. Jurco, P. Schupp, J. Wess, NonAbelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys. B 604, 148 (2001). https://doi.org/10.1016/S0550-3213(01)00191-2. arXiv:hep-th/0102129

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Jurco, P. Schupp, J. Wess, Noncommutative line bundle and Morita equivalence. Lett. Math. Phys. 61, 171 (2002). arXiv:hep-th/0106110

    MathSciNet  Google Scholar 

  12. R. Jackiw, S.Y. Pi, Covariant coordinate transformations on noncommutative space. Phys. Rev. Lett. 88, 111603 (2002). arXiv:hep-th/0111122

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  13. J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, 2nd edn. (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  14. J. Gomis, T. Mehen, Space-time noncommutative field theories and unitarity. Nucl. Phys. B 591, 265 (2000). arXiv:hep-th/0005129

    ADS  MathSciNet  Google Scholar 

  15. O. Aharony, J. Gomis, T. Mehen, On theories with lightlike noncommutativity. JHEP 0009, 023 (2000). arXiv:hep-th/0006236

    ADS  Google Scholar 

  16. P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928). https://doi.org/10.1098/rspa.1928.0023

    Article  ADS  Google Scholar 

  17. P.A.M. Dirac, Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133(821), 60 (1931). https://doi.org/10.1098/rspa.1931.0130

    Article  ADS  Google Scholar 

  18. M. Born, L. Infeld, Foundations of the new field theory. Proc. R. Soc. Lond. A 144(852), 425 (1934). https://doi.org/10.1098/rspa.1934.0059

    Article  ADS  Google Scholar 

  19. R.J. Szabo, Quantum gravity, field theory and signatures of noncommutative spacetime. Gen. Rel. Grav. 42, 1–29 (2010). arXiv:0906.2913

    ADS  MathSciNet  Google Scholar 

  20. C.P. Martin, D. Sanchez-Ruiz, The one-loop UV divergent structure of U(1) Yang–Mills theory on noncommutative \(R^4\). Phys. Rev. Lett. 83, 476–479 (1999). arXiv:hep-th/9903077

    ADS  MathSciNet  CAS  Google Scholar 

  21. H. Liu, *-Trek II: *(n) operations, open Wilson lines and the Seiberg–Witten map. Nucl. Phys. B 614, 305 (2001). arXiv:hep-th/0011125

    ADS  MathSciNet  Google Scholar 

  22. Y. Okawa, H. Ooguri, An exact solution to Seiberg–Witten equation of noncommutative gauge theory. Phys. Rev. D 64, 046009 (2001). arXiv:hep-th/0104036

    ADS  MathSciNet  Google Scholar 

  23. D. Brace, B.L. Cerchiai, B. Zumino, Nonabelian gauge theories on noncommutative spaces. Int. J. Mod. Phys. A 17, 205 (2002). arXiv:hep-th/0107225

    ADS  MathSciNet  Google Scholar 

  24. C.P. Martin, The gauge anomaly and the Seiberg–Witten map. Nucl. Phys. B 652, 72–92 (2003)

    ADS  MathSciNet  Google Scholar 

  25. F. Brandt, C.P. Martin, F.R. Ruiz, Anomaly freedom in Seiberg–Witten noncommutative gauge theories. JHEP 07, 068 (2003)

    ADS  MathSciNet  Google Scholar 

  26. G. Barnich, F. Brandt, M. Grigoriev, Seiberg–Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups. JHEP 0208, 023 (2002)

    ADS  MathSciNet  Google Scholar 

  27. C.P. Martin, Computing the \(\theta\)-exact Seiberg–Witten map for arbitrary gauge groups. Phys. Rev. D 86, 065010 (2012). arXiv:1206.2814 [hep-th]

    ADS  Google Scholar 

  28. J. Trampetic, J. You, \(\theta\)-exact Seiberg-Witten maps at order \(e^3\), Phys. Rev. D 91(12), 125027 (2015). https://doi.org/10.1103/PhysRevD.91.125027. arXiv:1501.00276 [hep-th]

  29. R. Horvat, A. Ilakovac, P. Schupp, J. Trampetić, J. You, Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory. Phys. Lett. B 715, 340 (2012)

    ADS  CAS  Google Scholar 

  30. M. Bordemann, N. Neumaier, S. Waldmann, S. Weiss, Deformation quantization of surjective submersions and principal fibre bundles. Crelle’s J. Reine Angew. Math. 639, 1–38 (2010) [Abstract] [PDF] [MR2608189] [Zbl05687061]. arXiv:0711.2965

  31. H. Bursztyn, V. Dolgushev, S. Waldmann, Morita equivalence and characteristic classes of star products. Crelle’s J. Reine Angew. Math. 662, 95–163 (2012) [Abstract] [PDF] [MR2876262] [Zbl1237.53080]. arXiv:0909.4259

  32. X. Calmet, B. Jurco, P. Schupp, J. Wess, M. Wohlgenannt, The standard model on non-commutative space-time. Eur. Phys. J. C 23, 363–376 (2002)

    ADS  MathSciNet  CAS  Google Scholar 

  33. W. Behr, N. Deshpande, G. Duplančić, P. Schupp, J. Trampetić, J. Wess, The \(Z \rightarrow \gamma \gamma, g g\) decays in the noncommutative standard model. Eur. Phys. J. C 29, 441–446 (2003)

    ADS  CAS  Google Scholar 

  34. P. Aschieri, B. Jurco, P. Schupp, J. Wess, Non-commutative GUTs, standard model and C, P, T. Nucl. Phys. B 651, 45–70 (2003)

    ADS  Google Scholar 

  35. C.P. Martin, The minimal and the new minimal supersymmetric grand unified theories on noncommutative space-time. Class. Quant. Grav. 30, 155019 (2013)

    ADS  MathSciNet  Google Scholar 

  36. M. Buric, V. Radovanovic, J. Trampetic, The one-loop renormalization of the gauge sector in the noncommutative standard model. JHEP 03, 030 (2007)

    ADS  MathSciNet  Google Scholar 

  37. D. Latas, V. Radovanovic, J. Trampetic, Non-commutative SU(N) gauge theories and asymptotic freedom. Phys. Rev. D 76, 085006 (2007)

    ADS  MathSciNet  Google Scholar 

  38. M. Buric, D. Latas, V. Radovanovic and J. Trampetic, The absence of the 4 psi divergence in noncommutative chiral models. Phys. Rev. D 77, 045031 (2008). https://doi.org/10.1103/PhysRevD.77.045031. arXiv:0711.0887 [hep-th]

  39. C.P. Martin, C. Tamarit, Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions. Phys. Rev. D 80, 065023 (2009). arXiv:0907.2464

    ADS  Google Scholar 

  40. C.P. Martin, C. Tamarit, Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups. JHEP 0912, 042 (2009). arXiv:0910.2677 [hep-th]

    ADS  Google Scholar 

  41. M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Chiral fermions in noncommutative electrodynamics: renormalisability and dispersion. Phys. Rev. D 83, 045023 (2011). arXiv:1009.4603 [hep-th]

    ADS  Google Scholar 

  42. P. Schupp, J. Trampetic, J. Wess, G. Raffelt, The photon neutrino interaction in NC gauge field theory and astrophysical bounds. Eur. Phys. J. C 36, 405–410 (2004)

    ADS  CAS  Google Scholar 

  43. P. Minkowski, P. Schupp, J. Trampetic, Neutrino dipole moments and charge radii in non- commutative space-time. Eur. Phys. J. C 37, 123–128 (2004)

    ADS  CAS  Google Scholar 

  44. J.L. Hewett, F.J. Petriello, T.G. Rizzo, Signals for noncommutative interactions at linear colliders. Phys. Rev. D 64, 075012 (2001). arXiv:hep-ph/0010354

    ADS  Google Scholar 

  45. S. Godfrey, M.A. Doncheski, Signals for noncommutative QED in e gamma and gamma gamma collisions. Phys. Rev. D 65, 015005 (2002). arXiv:hep-ph/0108268

    ADS  Google Scholar 

  46. S.K. Garg, T. Shreecharan, P.K. Das, N.G. Deshpande, G. Rajasekaran, TeV scale implications of non commutative space time in laboratory frame with polarized beams. JHEP 1107, 024 (2011). https://doi.org/10.1007/JHEP07(2011)024. arXiv:1105.5203

    Article  ADS  CAS  Google Scholar 

  47. T. Ohl, J. Reuter, Testing the noncommutative standard model at a future photon collider. Phys. Rev. D 70, 076007 (2004)

    ADS  Google Scholar 

  48. A. Alboteanu, T. Ohl, R. Ruckl, Probing the noncommutative standard model at hadron colliders. Phys. Rev. D 74, 096004 (2006)

    ADS  Google Scholar 

  49. M. Buric, D. Latas, V. Radovanovic, J. Trampetic, Nonzero \(Z \rightarrow \gamma \gamma\) decays in the renormalizable gauge sector of the NCSM. Phys. Rev. D 75, 097701 (2007)

    ADS  Google Scholar 

  50. T. Mehen, M.B. Wise, Generalized *-products Wilson lines and the solution of the Seiberg–Witten equations. JHEP 12, 008 (2000)

    ADS  MathSciNet  Google Scholar 

  51. S. Meljanac, A. Samsarov, J. Trampetic, M. Wohlgenannt, Scalar field propagation in the \(\phi ^4\) kappa-Minkowski model. JHEP 12, 010 (2011)

    ADS  Google Scholar 

  52. S. Meljanac, S. Mignemi, J. Trampetic, J. You, Nonassociative Snyder \(\phi ^4\) quantum field theory. Phys. Rev. D 96(4), 045021 (2017). https://doi.org/10.1103/PhysRevD.96.045021. arXiv:1703.10851 [hep-th]

  53. S. Meljanac, S. Mignemi, J. Trampetic, J. You, UV-IR mixing in nonassociative Snyder \(\phi ^4\) theory. Phys. Rev. D 97(5), 055041 (2018). https://doi.org/10.1103/PhysRevD.97.055041. arXiv:1711.09639 [hep-th]

  54. T. Filk, Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53–58 (1996). https://doi.org/10.1016/0370-2693(96)00024-X

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. S. Minwalla, M. Van Raamsdonk, N. Seiberg, Noncommutative perturbative dynamics. JHEP 0002, 020 (2000). arXiv:hep-th/9912072

    ADS  MathSciNet  Google Scholar 

  56. M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on \(R**4\). Phys. Lett. B 478, 394 (2000). arXiv:hep-th/9912094

    ADS  MathSciNet  CAS  Google Scholar 

  57. M. Van Raamsdonk, N. Seiberg, Comments on noncommutative perturbative dynamics. JHEP 0003, 035 (2000). https://doi.org/10.1088/1126-6708/2000/03/035. arXiv:hep-th/0002186

    Article  MathSciNet  Google Scholar 

  58. A. Matusis, L. Susskind, N. Toumbas, The IR/UV connection in the non-commutative gauge theories. JHEP 12, 002 (2000)

    ADS  MathSciNet  Google Scholar 

  59. M. Van Raamsdonk, The meaning of infrared singularities in noncommutative gauge theories’. JHEP 11, 006 (2001). https://doi.org/10.1088/1126-6708/2001/11/006. arXiv:hep-th/0110093

  60. R. Horvat, A. Ilakovac, J. Trampetic, J. You, On UV/IR mixing in noncommutative gauge field theories. JHEP 12, 081 (2011). arXiv:1109.2485 [hep-th]

    ADS  MathSciNet  Google Scholar 

  61. H. Grosse, M. Wohlgenannt, On \(\kappa\)-it deformation and UV/IR mixing. Nucl. Phys. B 748, 473 (2006). https://doi.org/10.1016/j.nuclphysb.2006.05.004. arXiv:hep-th/0507030

    Article  ADS  CAS  Google Scholar 

  62. R. Horvat, J. Trampetic, Constraining noncommutative field theories with holography. JHEP 1101, 112 (2011). arXiv:1009.2933

    ADS  MathSciNet  Google Scholar 

  63. D. Lust, E. Palti, Scalar Fields. Hierarchical UV/IR Mixing and The Weak Gravity Conjecture, JHEP 1802, 040 (2018). https://doi.org/10.1007/JHEP02(2018)040. arXiv:1709.01790

    Article  Google Scholar 

  64. C.P. Martin, J. Trampetic, J. You, Quantum noncommutative ABJM theory: first steps. JHEP 1804, 070 (2018). https://doi.org/10.1007/JHEP04(2018)070. arXiv:1711.09664

    Article  ADS  MathSciNet  Google Scholar 

  65. J. Zeiner, Noncommutative quantumelectrodynamics from Seiberg–Witten Maps to all orders in Theta (mu nu) (Wurzburg U.). Jul. PhD thesis, p. 139 (2007)

  66. P. Schupp, J. You, UV/IR mixing in noncommutative QED defined by Seiberg–Witten map. JHEP 08, 107 (2008)

    ADS  MathSciNet  Google Scholar 

  67. C.P. Martin, J. Trampetic, J. You, Super Yang-Mills and \(\theta\)-exact Seiberg-Witten map: absence of quadratic noncommutative IR divergences. JHEP 1605, 169 (2016). https://doi.org/10.1007/JHEP05(2016)169. arXiv:1602.01333 [hep-th]

  68. R. Horvat, A. Ilakovac, P. Schupp, J. Trampetic, J. You, Neutrino propagation in noncommutative spacetimes. JHEP 04, 108 (2012). https://doi.org/10.1007/JHEP04(2012)108. arXiv:1111.4951 [hep-th]

  69. R. Horvat, A. Ilakovac, J. Trampetic, J. You, Self-energies on deformed spacetimes. JHEP 11, 071 (2013). https://doi.org/10.1007/JHEP11(2013)071. arXiv:1306.1239 [hep-th]

  70. R. Horvat, J. Trampetić, J. You, Photon self-interaction on deformed spacetime, Phys. Rev. D 92(12), 125006 (2015). https://doi.org/10.1103/PhysRevD.92.125006. arXiv:1510.08691 [hep-th]

  71. C.P. Martin, J. Trampetic, J. You, Quantum duality under the \(\theta\)-exact Seiberg-Witten map. JHEP 1609, 052 (2016). https://doi.org/10.1007/JHEP09(2016)052. arXiv:1607.01541

  72. C.P. Martin, J. Trampetic, J. You, Equivalence of quantum field theories related by the \(\theta\)-exact Seiberg-Witten map, Phys. Rev. D 94(4), 041703 (2016). https://doi.org/10.1103/PhysRevD.94.041703. arXiv:1606.03312 [hep-th]

  73. D. Latas, J. Trampetić, J. You, Seiberg–Witten map invariant scatterings, Phys. Rev. D 104(1), 015021 (2021). https://doi.org/10.1103/PhysRevD.104.015021. arXiv:2012.07891

  74. R. Horvat, D. Latas, J. Trampetić, J. You, Light-by-light scattering and spacetime noncommutativity, Phys. Rev. D 101(9), 095035 (2020). https://doi.org/10.1103/PhysRevD.101.095035. arXiv:2002.01829 [hep-ph]

  75. J. Trampetić, J. You, Seiberg–Witten maps and scattering amplitudes of NCQED, Phys. Rev. D 105(7), 075016 (2022). https://doi.org/10.1103/PhysRevD.105.075016. arXiv:2111.04154 [hep-th]

  76. S. Raju, The Noncommutative S-Matrix. JHEP 0906, 005 (2009). https://doi.org/10.1088/1126-6708/2009/06/005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  77. J.H. Huang, R. Huang, Y. Jia, Tree amplitudes of noncommutative U(N) Yang–Mills Theory. J. Phys. A 44, 425401 (2011). https://doi.org/10.1088/1751-8113/44/42/425401

    Article  MathSciNet  Google Scholar 

  78. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Cambridge, 1995)

    Google Scholar 

  79. C.P. Martin, J. Trampetić, J. You, UV/IR mixing in noncommutative SU(N) Yang-Mills theory, Eur. Phys. J. C 81(10), 878 (2021). https://doi.org/10.1140/epjc/s10052-021-09686-5. arXiv:2012.09119 [hep-th]

  80. R. Horvat, D. Kekez, J. Trampetic, Spacetime noncommutativity and ultra-high energy cosmic ray experiments. Phys. Rev. D 83, 065013 (2011). arXiv:1005.3209 [hep-ph]

    ADS  Google Scholar 

  81. R. Horvat, D. Kekez, P. Schupp, J. Trampetic, J. You, Photon-neutrino interaction in theta-exact covariant noncommutative field theory. Phys. Rev. D 84, 045004 (2011)

    ADS  Google Scholar 

  82. R. Horvat, A. Ilakovac, D. Kekez, J. Trampetic, J. You, Forbidden and Invisible Z Boson Decays in Covariant theta-exact Noncommutative Standard Model. J. Phys. G: Nucl. Part. Phys. 41, 055007 (2014). arXiv:1204.6201 [hep-ph]

    ADS  CAS  Google Scholar 

  83. R. Horvat, J. Trampetic, J. You, Spacetime deformation effect on the early universe and the PTOLEMY experiment. Phys. Lett. B 772, 130 (2017). https://doi.org/10.1016/j.physletb.2017.06.028. arXiv:1703.04800 [hep-ph]

  84. R. Horvat, J. Trampetic, J. You, Inferring type and scale of noncommutativity from the PTOLEMY experiment, Eur. Phys. J. C 78(7,) 572 (2018). https://doi.org/10.1140/epjc/s10052-018-6052-1. arXiv:1711.09643 [hep-ph]

  85. J. Selvaganapathy, P. Konar, P.K. Das, Inferring the covariant \(\Theta\)- exact noncommutative coupling in the top quark pair production at linear colliders. JHEP 1906, 108 (2019). https://doi.org/10.1007/JHEP06(2019)108. arXiv:1903.03478 [hep-ph]

  86. W. Wang, J.H. Huang, Z.M. Sheng, TeV scale phenomenology of \(e^+e^- \rightarrow \mu ^+ \mu ^-\) scattering in the noncommutative standard model with hybrid gauge transformation. Phys. Rev. D 86, 025003 (2012). https://doi.org/10.1103/PhysRevD.86.025003. arXiv:1205.0666 [hep-ph]

  87. J. Selvaganapathy, P. K. Das, P. Konar, Search for associated production of Higgs with Z boson in the noncommutative Standard Model at linear colliders, Int. J. Mod. Phys. A 30(26), 1550159 (2015). https://doi.org/10.1142/S0217751X15501596. arXiv:1509.06478 [hep-ph]

  88. M. R. Bekli, I. Chadou, N. Mebarki, Bounds on the scale of noncommutativity from mono photon production in ATLAS Runs -1 and -2 experiments at LHC energies, Int. J. Geom. Meth. Mod. Phys. 18(08,) 2150126 (2021). https://doi.org/10.1142/S0219887821501267. arXiv:2012.04331 [hep-ph]

  89. A.G. Cohen, S.L. Glashow, Very special relativity. Phys. Rev. Lett. 97, 021601 (2006). https://doi.org/10.1103/PhysRevLett.97.021601. arXiv:hep-ph/0601236

  90. G. Aad et al., [ATLAS Collaboration], Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector, Phys. Rev. Lett. 123(5), 052001 (2019). https://doi.org/10.1103/PhysRevLett.123.052001. arXiv:1904.03536 [hep-ex]

Download references

Acknowledgements

J.T. thanks Dieter Lüst for many discussions and acknowledges the support of the Max-Planck-Institute for Physics, München, Germany, for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Trampetić.

Additional information

Noncommutativity and Physics. Guest editors: George Zoupanos, Konstantinos Anagnostopoulos, Peter Schupp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trampetić, J., You, J. Revisiting NCQED and scattering amplitudes. Eur. Phys. J. Spec. Top. 232, 3723–3731 (2023). https://doi.org/10.1140/epjs/s11734-023-00837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00837-1

Navigation