Skip to main content
Log in

Exponential unitary integrators for nonseparable quantum Hamiltonians

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum Hamiltonians containing nonseparable products of non-commuting operators, such as \(\hat{{\varvec{x}}}^m \hat{{\varvec{p}}}^n\), are problematic for numerical studies using split-operator techniques since such products cannot be represented as a sum of separable terms, such as \(T(\hat{{\varvec{p}}}) + V(\hat{{\varvec{x}}})\). In the case of classical physics, Chin [Phys. Rev. E 80: 037701 (2009)] developed a procedure to approximately represent nonseparable terms in terms of separable ones. We extend Chin’s idea to quantum systems. We demonstrate our findings by numerically evolving the Wigner distribution of a Kerr-type oscillator whose Hamiltonian contains the nonseparable term \(\hat{{\varvec{x}}}^2 \hat{{\varvec{p}}}^2+\hat{{\varvec{p}}}^2 \hat{{\varvec{x}}}^2\). The general applicability of Chin’s approach to any Hamiltonian of polynomial form is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

The codes developed for the current study are available at [13].

Data availability statement

There is no associated data.

References

  1. M. Feit, J. Fleck Jr., A. Steiger, J. Comp. Phys. 47, 412 (1982). https://doi.org/10.1016/0021-9991(82)90091-2

    Article  ADS  Google Scholar 

  2. J. Javanainen, J. Ruostekoski, J. Phys. A: Math. Gen. 39, L179 (2006). https://doi.org/10.1088/0305-4470/39/12/L02

    Article  ADS  Google Scholar 

  3. H. Yoshida, Phys. Lett. A 150, 262 (1990). https://doi.org/10.1016/0375-9601(90)90092-3

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Cabrera, D.I. Bondar, K. Jacobs, H.A. Rabitz, Phys. Rev. A 92, 042122 (2015). https://doi.org/10.1103/PhysRevA.92.042122. arXiv:1212.3406

    Article  ADS  Google Scholar 

  5. M. Tao, Phys. Rev. E 94, 043303 (2016). https://doi.org/10.1103/PhysRevE.94.043303

    Article  ADS  MathSciNet  Google Scholar 

  6. S.A. Chin, Phys. Rev. E 80, 037701 (2009). https://doi.org/10.1103/PhysRevE.80.037701

    Article  ADS  Google Scholar 

  7. S.A. Chin, Am. J. Phys. 88, 883 (2020). https://doi.org/10.1119/10.0001616

    Article  ADS  Google Scholar 

  8. M. Oliva, D. Kakofengitis, O. Steuernagel, Physica A 502, 201 (2017). https://doi.org/10.1016/j.physa.2017.10.047. arXiv:1611.03303

    Article  ADS  Google Scholar 

  9. T. L. Curtright, D. B. Fairlie, C. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space ( World Scientific, 2014)

  10. G. Kirchmair, B. Vlastakis, Z. Leghtas, S.E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 495, 205 (2013). https://doi.org/10.1038/nature11902. arXiv:1211.2228

    Article  ADS  Google Scholar 

  11. M. Oliva, O. Steuernagel, Phys. Rev. A 99, 032104 (2019). https://doi.org/10.1103/PhysRevA.99.032104. arXiv:1811.02952 [quant-ph]

    Article  ADS  Google Scholar 

  12. J.G. Muñoz, F. Delgado, J. Phys. Conf. Ser. 698, 012019 (2016). https://doi.org/10.1088/1742-6596/698/1/012019

    Article  Google Scholar 

  13. https://github.com/dibondar/NonseparableSplitOperator

  14. J.E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949). https://doi.org/10.1017/S0305004100000487

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Hancock, M.A. Walton, B. Wynder, Eur. J. Phys. 25, 525 (2004). https://doi.org/10.1088/0143-0807/25/4/008. arXiv:physics/0405029

    Article  Google Scholar 

  16. H.J. Groenewold, Physica 12, 405 (1946). https://doi.org/10.1016/S0031-8914(46)80059-4

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Kołaczek, B. J. Spisak, and M. Wołoszyn, In Information Technology, Systems Research, and Computational Physics, edited by P. Kulczycki, J. Kacprzyk, L. T. Kóczy, R. Mesiar, and R. Wisniewski ( Springer International Publishing, Cham, 2020) pp. 307–320 https://doi.org/10.1007/978-3-030-18058-4_24

  18. D.I. Bondar, R. Cabrera, R.R. Lompay, M.Y. Ivanov, H.A. Rabitz, Phys. Rev. Lett. 109, 190403 (2012). https://doi.org/10.1103/PhysRevLett.109.190403. arXiv:1105.4014v5

    Article  ADS  Google Scholar 

  19. F. Bopp, Annales de l’institut Henri Poincaré 15, 81 (1956) http://eudml.org/doc/79057

  20. A. Arnold, C. Ringhofer, SIAM, J. Numer. Anal. 33, 1622 (1996). https://doi.org/10.1137/S003614299223882X

  21. A. Thomann, A. Borzì, Num. Meth. Part. Diff. Eq. 33, 62 (2017). https://doi.org/10.1002/num.22072

    Article  Google Scholar 

  22. M. Oliva, O. Steuernagel, Phys. Rev. Lett. 122, 020401 (2019). https://doi.org/10.1103/PhysRevLett.122.020401. arXiv:1708.00398

    Article  ADS  Google Scholar 

  23. I.S. Averbukh, N.F. Perelman, Phys. Lett. A 139, 449 (1989). https://doi.org/10.1016/0375-9601(89)90943-2

    Article  ADS  Google Scholar 

  24. R.W. Robinett, Phys. Rep. 392, 1 (2004). https://doi.org/10.1016/j.physrep.2003.11.002

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Jacobs, D.A. Steck, Contemporary Phys. 47, 279 (2006). https://doi.org/10.1080/00107510601101934

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank both reviewers for their many thoughtful suggestions. D.I.B. was supported by by the W. M. Keck Foundation and Army Research Office (ARO) (Grant W911NF-19-1-0377; program manager Dr. James Joseph). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARO or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes thank both reviewers for their many thoughtful suggestions notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denys I. Bondar.

Additional information

Contribution to the Focus Point on “Mathematics and Physics at the Quantum-Classical Interface” edited by D.I. Bondar, I. Joseph, G. Marmo, C. Tronci.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćirić, M., Bondar, D.I. & Steuernagel, O. Exponential unitary integrators for nonseparable quantum Hamiltonians. Eur. Phys. J. Plus 138, 238 (2023). https://doi.org/10.1140/epjp/s13360-023-03819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03819-3

Navigation